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Abstract—One of the primary difficulties in flying airplanes
of all sizes is navigation, or ensuring that the location and
attitude of the airplane is known at all times. For large aerial
systems, high-quality IMUs have been successfully used for
decades. However, the weight, power, cost, and size restrictions
of miniature-UAVs (MAVs) preclude the use of high-quality
IMUs for navigation. For the past two and a half years,
this contract has enabled the investigation of techniques for
enabling high-quality navigation using a combination of low-
quality inertial sensors, visual sensors, and (when available)
GPS. Specific areas of contribution from this project include: (1)
real-time techniques for improving pose estimates on MAVs with
GPS, (2) two proposed approaches for enabling GPS-denied
navigation, (3) quantitative and analytical analyses of different
navigation algorithms, and (4) GPS-denied navigation utilizing
multiple agents. The contributions in each of these areas is
discussed in this report.

I. INTRODUCTION

Recently, Unmanned Aerial Vehicles (UAVs) have seen a
dramatic increase in their utilization for military applications.
In addition, UAVs are being investigated for multiple civilian
applications, including rural search and rescue, forest fire
monitoring and agricultural information gathering. Due to
their small size, Miniature UAVs (MAVs) are an attractive
platform for executing many civilian and military missions.
Some of the primary advantages of MAVs include: (1) they
are significantly less expensive to purchase than the large
UAVs typically used by the military; (2) their small size
simplifies transport, launch and retrieval; and (3) they are
less expensive to operate than large UAVs.

Accurate pose (location and attitude) estimation is essential
for many MAV missions. For example, if the MAV is
conducting a surveillance mission and the GPS location of
an object in the video is desired, an attitude estimate error of
only a few degrees for an MAV flying 500 meters above the
ground can lead to dozens of meters of error in the object
location estimate. However, the size and weight constraints
of an MAV dictate the use of lightweight and therefore
inaccurate sensors. To compensate for the inaccurate sensors,
prior pose estimation methods have focused largely on fusion
of measurements from GPS and inertial measurement units
(IMUs)[1], [2], [3], [4].

These approaches, however, suffer from two primary weak-
nesses. First, many envisioned scenarios for MAVs include
operation in tightly constrained spaces such as urban terrain,
dense foliage, and inside buildings. In these environments,
the signals from GPS satellites will typically be occluded,
precluding the use of GPS-based navigation systems. Second,

even when GPS is available, the navigation state accuracy of
current techniques is very low due to the quality of sensors
used to estimate the MAV pose.

To overcome these weaknesses, our research has focused
on enabling navigation of MAVs through the fusion of
visual and inertial sensors. Visual sensors, such as cameras,
possess a number of advantages. The senors themselves are
lightweight and low power. Many existing MAV systems
carry an on-board camera for visual observations, which can
be used simultaneously for pose estimation. In addition, the
source of errors in the inertial and visual sensors are generally
uncorrelated, enabling fusion of the sensors together for more
accurate pose estimation.

This report contain a description of several different areas
of research into visual and inertial sensor fusion. In Section
II, we discuss a method that can be utilized in real-time to
achieve more accurate pose estimates when GPS is available.
In Section III, we present a preliminary study demonstrating
some potential of visual/inertial sensor fusion for improved
navigation without GPS. In Section IV, we describe several
modifications made to prior visual/inertial fusion navigation
techniques to enable fusion on-board an MAV. Sections V
and VI present a simulation-based and analytical comparison,
respectively, of our improved technique with SLAM-based
navigation techniques. Finally, Sections VII and VIII intro-
duce navigation techniques for multiple vehicles, enabling re-
duced and bounded drift navigation techniques, respectively.
We conclude this report by listing all publications resulting
from this research and discussing future work in Sections IX
and X.

II. REAL-TIME NAVIGATION IMPROVEMENT FOR MAVS
WITH GPS

Much of the prior research in using visual information
for pose estimation has been in visual odometry (VO) [5],
[6], where a pose is computed directly from the motion of
points in the camera view. This makes it possible to use the
camera as a standalone sensor. However, all visual odometry
methods share several key weaknesses. First, VO systems
can only compute motion relative to the pose of the camera
from the previous frame. This means that the system depends
on accurate initialization of the camera pose at the first
frame. It also means that the current pose is computed by
integrating all previous poses, which causes error in the poses
to grow without bound. The second limitation is that while
camera rotation can be unambiguously reconstructed, only
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the direction of the camera’s translation, not the magnitude,
can be reconstructed without additional information.

To avoid the problems inherent in VO, we focus on fusing
together information from the camera with a GPS/IMU sys-
tem to achieve more accurate pose estimates. Prior methods
dealing with fusion of visual information and GPS/IMU
estimates have focused on two approaches. The first uses
visual information to gauge the accuracy of the GPS/IMU
estimates [7], [8], [9]. It requires that the 3D location of
points in the camera view be accurately estimated, something
which can be difficult to do in MAV video. (Note that most
prior methods assume either a stereo camera system or a
wide-area field of view, enabling accurate estimation of 3-
D locations. Neither of these assumptions are typically valid
for MAVs.) The second approach [10] directly estimates a
pose by aligning successive images. This method can be
quite accurate, but the iterative methods employed to compute
a pose estimate require extensive computation time. The
processing units found in an MAV are not capable of doing
such computation fast enough to compute pose estimates in
real time.

We propose a method to combine GPS/IMU pose estimates
with visual information that does not require computation of
3D point locations or direct image registration. Instead, opti-
cal flow measurements are combined to create a homography
matrix which can be input directly into an Unscented Kalman
Filter [11] (UKF) as the measurement variable. Treating pose
estimates from the GPS/IMU systems as a state variable, the
UKF is able to combine the information from both of these
sensors to increase the accuracy of pose estimation.

An additional advantage of our method is that it does
not require decomposition of the homography matrix into
rotation and translation components. While several previous
methods have used decomposition of the homography matrix
as a way to estimate pose from vision [12], [13], [14], [15],
[16], homography decomposition is a poorly-conditioned
problem when the magnitude of the camera’s translation is
small compared to the distance of the camera from the scene
being imaged. Because of the altitudes at which MAVs fly
and their relatively slow speeds, this ill-conditioned case is
typical in MAV video.

The remainder of this section is outlined as follows. In
section II-A we describe our overall system for improving
pose estimates using the UKF. Section II-B describes a novel
method to transform the covariance of feature tracking mea-
surements into covariance of the corresponding homography.
We present some results achieved using our fusion system in
Section II-C.

A. Vision/GPS/IMU Fusion System

To improve the accuracy of MAV pose estimation, we
propose to fuse motion information captured by a camera
with GPS/IMU estimates of pose as shown in Figure 1. At
the core of our system is an Unscented Kalman Filter, chosen
for its ability to combine data with varying uncertainty in
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Fig. 1. Layout of the vision/GPS/IMU fusion system.

highly non-linear systems. The state of the UKF is a 12x1
vector representing two most recent poses of the MAV. This
state is initialized as:

x0 = [y0,y1]T , (1)

where yt represents the pose of the MAV at time t. A pose
includes 3 parameters for the location of the MAV (x̂, ŷ, ẑ)
and 3 parameters for the attitude (φ, θ, ψ). It is necessary
to keep two pose estimates in the state due to the fact that
two video frames are required in order to extract information
about camera motion. After applying the measurement update
step of the UKF, the state of the UKF is two refined pose
estimates, defined as

x′0 = [y′0,y
′
1]T . (2)

Whenever a new pose estimate is received from the
GPS/IMU system, the state of the UKF is updated to contain
the most recent pose measurement, and the previous refined
estimate

xt = [y′t,yt+1]T . (3)

By consistently keeping a refined pose estimate in the state of
the UKF, the pose estimates become more accurate over time.
Corresponding steps are taken with the covariance matrix
associated with the state of the UKF.

To generate the refined pose estimates introduced above,
it is necessary to (1) define the state-measurement function
which transforms a state vector to a measurement vector (2)
implement the measurement update step of the UKF. These
are covered in the next two sections.

1) State-measurement function: Each frame in a video
sequence does not explicitly contain information about the
pose of the camera. However, by comparing two frames of
video, a homography matrix that encapsulates information
about the relative movement of the camera can be computed.
A homography matrix maps the location of all points in



an image to their location in the second image, assuming
that the objects being observed by the camera are co-planar.
Due to the flight characteristics of MAVs co-planarity is
usually a valid assumption. The homography relationship is
represented by the equation

Υ′ = HΥ, (4)

where Υand Υ′ are the location of points in images 1 and 2,
respectively, and H is the homography matrix. (We discuss
how the homography matrix is estimated in section II-B.)

In addition to mapping pixel locations between images, a
homography is related to the displacement between cameras
by the formula

H = K2

(
R+

1
d
TNT

)
K−1

1 (5)

where R is the rotation from camera 1 to camera 2, T is
the translation from camera 1 to camera 2 in camera 2’s
coordinate system, N is the unit normal of the plane being
imaged in camera 1’s coordinate system, and d is the distance
from the optical center of camera 1 to the plane. K1 and
K2 represent the calibration matrix of each camera and are
assumed to be known a priori. In our case, the same camera
captured both images so K1 = K2 = K. In order to use the
poses from the GPS/IMU, this formulation must be modified
due to the fact that the pose parameters are relative to world
coordinates.

For a state vector xt = [yt,yt+1] in the UKF, two rotation
matrices

(
Rwct

, Rwct+1

)
can be derived that rotate from the

world frame to the coordinate frame of the camera at time t
and t + 1. Similarly, two translation vectors

(
Twct , Twct+1

)
for the cameras, in world coordinates, can be derived. Any
point in 3-space that is observed by both cameras can be
rotated from one camera’s coordinate system to the other
by a rotation matrix R, which can be expressed in terms of
(Rwc1 , Rwc2) as

R = Rwc2R
T
wc1 . (6)

The vector T in Equation (5) can be expressed in terms of
(Twc1 , Twc2) as

T = Rwc2 (Twc1 − Twc2) . (7)

In order to obtain N , the (known) normal of the plane
in world coordinates Nw must be rotated into camera 1
coordinates.

N = Rwc1Nw (8)

Because we assume that Nw is [0, 0, 1] (i.e. the ground is not
sloped), the parameter d is simply the z-component of camera
1’s translation in world coordinates. Substituting Equations
(6-8) into Equation (5) and simplifying yields

H = KRwc2

(
I − 1

d

(
Twwc1 − T

w
wc2

)
NT
w

)
RTwc1K

−1. (9)

There is a scale ambiguity inherent in the homography [17],
so to eliminate it we normalize the homography so that the
ninth element of the matrix is equal to one.

H = H/h3,3. (10)

The first 8 elements of the homography matrix are then taken
as the predicted measurement vector.

2) Measurement update: The measurement update step
of the Kalman Filter uses the current state, the current
homography measurement and their associated covariance
matrices to compute a more accurate estimate of the current
state. In order to do this it is necessary to transform the state-
covariance matrix into the measurement space, something
which is difficult to do in a non-linear system. The UKF
achieves this transformation by sampling the distributions of
the state variables to come up with a number of sample states.
Using the state-measurement function, these sample states are
then transformed into sample measurements. The mean of the
sample measurements becomes the predicted measurement,
and the average covariance between the mean and the sample
measurements form the predicted measurement covariance.

The process by which this is done is as follows:
1) Create the augmented state vector xa by combining the

current state xt and the mean of the measurement noise
ν

xa =
[
y′t−1,yt, ν

]T
. (11)

2) Create an augmented covariance matrix from the co-
variance of the filtered pose Pt−1, the current pose Pt
and the homography Ph

P a =

 Pt−1 0 0
0 Pt 0
0 0 Ph

 . (12)

3) Construct the set of sample points χi

χ0 = xa,

χi = xa +
(√

(L+ κ)P a
)
i
,

χi+L = xa −
(√

(L+ κ)P a
)
i
,

(13)

and a set of weights

W0 = κ/ (L+ κ) ,
Wi = 1/2 (L+ κ) , and
Wi+L = 1/2 (L+ κ)

(14)

where
(√

(L+ κ)P a
)
i

is the ith column of the matrix
square root of (L+ κ)P a (any matrix square root can
be used). L is the number of elements in the augmented
state vector and κ is set such that L + κ = 3 as
suggested by Julier and Uhlman [11].

4) Transform the sample points with the state-
measurement transformation

γi = F (χi) , (15)



where F (χi) represents the formulation of a homog-
raphy from two poses (Eqn. (9)), followed by scale
normalization (Eqn. (10)).

5) Find the mean of the sample homographies

ĥ =
2L∑
i=0

Wiγi. (16)

6) Compute the covariance from the weighted outer prod-
uct of the transformed points

Phh =
2L∑
i=0

Wi

(
γi − ĥ

)(
γi − ĥ

)T
. (17)

7) Compute the state-measurement cross-correlation from
the weighted outer product of both sets of points

Pxh =
2L∑
i=0

Wi (χi − x)
(
γi − ĥ

)T
. (18)

8) Compute the optimal Kalman gain

K = PxhP
−1
hh . (19)

9) Update the pose estimates

x̂ = x +K
(
h− ĥ

)
. (20)

10) Update the state covariance

Pxx = Pxx −KPhhKT . (21)

The elements of the refined state vector corresponding to the
current pose and the associated covariances are then fed back
into the filter for the next iteration. A result of this feedback
system is that each pose will be filtered twice. Therefore,
for increased accuracy, a filtered pose can be used after its
second time through the filter.

In order for the filter to work properly it is essential to
have an accurate estimate of the measurement covariance.
This allows an appropriate level of confidence to be placed
in the state correction caused by the measurement. Section
II-B discusses a novel method we have developed to estimate
homography covariance from the outputs of our RANSAC
system.

B. Transformation of Uncertainty from Feature tracking to
Homography

To utilize the homography matrix in the UKF, two items
must be computed from the visual information: (1) an es-
timate of the homography matrix and (2) an estimate of
the covariance of the homography matrix. These two blocks
are illustrated by the homography estimator and covariance
estimator blocks in Figure 1.

To compute the estimated homography, features identified
by the Harris Corner Detector [18] are tracked across im-
ages using a pyramidal implementation of the Lucas-Kanade
optical flow algorithm [19]. Because video frames and pose
estimates from the GPS/IMU unit are received at different

times, the Harris corner detector is run whenever a new pose
estimate is received, and the selected set of features is tracked
across every frame until the next pose estimate is received.
Once the second pose estimate is received, a RANSAC [20]
algorithm is used to reject outliers and the homography that
best fits the remaining feature correspondences is computed
using the normalized DLT algorithm outlined in [17].1 By
setting a minimum number of inliers, the RANSAC algorithm
can also detect most mis-registrations. In such cases, only
information from the GPS/IMU is used to update the filter.

Once an estimate of the homography has been computed,
the covariance associated with that estimate must be deter-
mined. To do this we propose using information obtained
from the RANSAC and DLT algorithms to determine the vari-
ance of the feature tracking process and then use techniques
from the UKF to transform this into a covariance matrix for
the estimated homography.

From the homography estimation system we obtain a list
of inlier features. For each inlier a residual error term can be
computed by finding the distance between the tracked feature
location and the feature location as predicted by the homog-
raphy. By computing the standard deviation of this residual
error (σ), we are able to characterize the noise present in
feature locations. The standard deviation is computed as:

σ =

√∑n
i=1 ‖Υ′i −HΥi‖2

n
, (22)

where n is the number of inlier features. From this standard
deviation, we compute a covariance matrix representing the
uncertainty in all feature locations as

PΥ =
σ2

2
I. (23)

This covariance matrix is of size 2n × 2n, representing
the covariance in both the x and y locations in the image.
Similarly, σ2 is divided by two to evenly distribute the
uncertainty in the x̂ and ŷ directions.

Due to the non-linearity of the transformation from point
correspondences to a homography matrix, it is difficult to
directly transform the covariance of feature locations into
the homography space. Instead of a direct transformation, we
propose to use the sampling technique of the UKF. We create
a set of sample point correspondences, transforming them
into homography matrices and computing the covariance of
the resulting matrices.

To perform the covariance transformation, a set of 4n+ 1
sample points χi are created as

χ0 = Υ′,

χi = Υ′ +
(√

(L+ κ)P
)
i
, and

χi+n = Υ′ −
(√

(L+ κ)P
)
i

(24)

1Harris corner detection, pyramidal Lucas-Kanade feature tracking, and
the normalized DLT algorithm are well known in the computer vision field
and are not covered in more detail here. We encourage readers to visit the
citations for more information on these techniques.
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Fig. 3. Evaluation of filter performance using MAV flight data. The MAV
was commanded to orbit a target of known location. The error in target
geolocation is shown for 200 frames with filtering (dashed line) and without
(solid line).

where L = 2n and κ = 3 − L as in Equation (13), and
Υ′ = [Υ′1 . . .Υ

′
n].

A homography is computed for each χi by combining the
sample point with with the feature points [Υ1 . . .Υn] using
the normalized DLT algorithm[17], creating 4n+1 vectorized
homography matrices (γi). Each homography is normalized
using Equation (10) and the covariance of the homographies
is then computed as

C =
1

2n

2n∑
i=1

(γi − γ0) (γi − γ0)T . (25)

C. Results

We evaluated the performance of the filtering framework
in two ways. The first method used simulated data to eval-
uate the performance of the filter independent from feature
tracking. A series of true poses for an MAV were generated
and from these poses a true homography was calculated for
each sequential frame pair. For each true homography a set
of point correspondences was generated. The true poses and
the point correspondences were then corrupted with Gaussian
noise and used as inputs to the filter. Results of the simulation
are shown in Figure 2. The noise added to the true pose values
had a standard deviation of 1 meter in location and 2 degrees
in attitude, while the noise in the point correspondences had
a standard deviation of 0.5 pixels. In order to obtain a good
statistical sampling, 5,000 iterations of the simulation were
run. The results show that the filter was able to significantly
reduce the noise in the pose estimates. The standard deviation
of the error in filtered poses was reduced to approximately
0.5 meters in location and 0.66 degrees in attitude.

The second method used real MAV flight data. It was not
possible to precisely determine the true pose of the MAV,
so the performance of the filter was determined by using the
estimated poses to solve a geolocation problem. An MAV

flying at an altitude of 70 meters was used to collect 640×480
resolution video of a target with a known location. GPS/IMU
pose estimates of the MAV were generated by a Kestrel
autopilot [3] and transmitted to a ground station at the rate of
4 Hz. The Kestrel uses MEMS based accelerometers and rate
gyros as well as differential pressure sensors and consumer
grade GPS to compute pose estimates. These estimates were
synchronized with the video frames to within approximately
75 milliseconds. About 200 frames with pose estimates were
captured.

Using the method in [21] a location for the target was
computed using the filtered pose estimate, which was then
compared to the target’s actual location. For this test, the data
was post-processed in the UKF framework using Matlab on
a computer with a 3.2 GHz Pentium 4 processor. Our test
system processed the data at 2 frames-per-second, although
a careful C-code implementation should be able to achieve
significantly higher throughput. The results of this test in
Figure 3, show that the filtered poses reduce the error in target
geolocation as well as significantly reducing the short-term
variance in the estimates based on the GPS/IMU alone. Due
to the nature of the autopilot sensors, there remains a slowly
varying bias term in the error which cannot be estimated by
this formulation of the filter. Nevertheless, we are still able
to reduce the average absolute error in target geolocation by
29.4%.

III. THE ADVANTAGES OF IMU/VISUAL SENSOR FUSION
OVER VISION-ONLY BASED NAVIGATION

While the prior section described a method for improving
MAV pose estimates when GPS is available, we were also
interested in demonstrating the potential visual and inertial
sensor fusion for GPS-denied scenarios. In this section, we
demonstrate that fusing inertial and visual sensors leads to
improved navigation accuracy.

Many of the advantages associated with fixed-wing MAVs
stem from their ability to operate autonomously at two levels.
On a basic level, MAVs must be able to autonomously
perform low-level flight tasks such as taking off, flying
straight & level, climbing, descending, banking, etc. On a
higher level, MAVs must be able to combine these ma-
neuvers in order to fly to specific locations, follow specific
trajectories, and otherwise navigate autonomously. In order
to perform these tasks, MAVs must be able to estimate their
own pose, which consists of location (tx, ty, tz) and attitude,
which is commonly expressed using Euler angles for yaw(ψ),
pitch(θ), and roll(φ). We can divide these six pose parameters
into two sets of three parameters. The first group, which we
will refer to as aviation parameters (pitch, roll, and altitude),
are required to perform basic autonomous maneuvers, while
the second, which we term navigation parameters (x, y, yaw),
are additionally required for autonomous navigation. Current
MAV systems [1], [22], [2], [23] carry a simple Inertial
Navigation System (INS) consisting of accelerometers, rate
gyros, and pressure sensors. These sensors can provide only
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Fig. 2. Simulation results showing actual pose values, noisy pose values and filtered pose estimates (dashed line). The filter was able to significantly
improve pose estimates in the presence of noise from both the GPS/IMU and the feature tracker.

relative information about navigation parameters2; thus INS
based estimates of navigation parameters will drift without
bound over time. Because MAVs use low-cost, lightweight
MEMS-based inertial sensors, errors in navigation parameter
estimates from the INS alone typically increase extremely
rapidly, often becoming unacceptably large within a few
seconds. For this reason, current MAV systems rely on the
Global Positioning System (GPS) to provide estimates of the
navigation parameters. While GPS does provide bounded-
error estimates of geo-location (x,y) and heading, it makes the
operation of the MAV dependent on external infrastructure–
the network of orbiting GPS satellites. Signals from these
satellites can be blocked, both by environmental obstacles
(eg. urban terrain) and by deliberate or unintentional jam-
ming [24]. Much effort has therefore been directed at finding
ways to reduce the dependence of MAV platforms on GPS.

Vision-based pose estimation techniques are a promising
way to estimate pose in GPS-denied environments, and thus
reduce dependence on GPS. Vision sensors are typically
already available on MAV platforms, and provide a rich
source of information about the environment. There are two
main methods of performing vision-based pose estimation

2As we shall see, INS sensors can provide absolute measurements of
aviation parameters. Exploitation of this fact is a critical component of this
section.

reported in the literature. Visual Simultaneous Localization
And Mapping, or Visual SLAM (e.g. [25], [26], [27], [28],
[29]) is perhaps the most elegant and complete method.
SLAM algorithms in general estimate both robot state and
the location of landmarks in the environment simultaneously.
If perfected, a solution to the Visual SLAM problem would
allow a robot to function in a truly autonomous manner,
using vision and other sensors to navigate an unfamiliar
environment as a human being can, without relying on fidu-
cial markings, GPS signals, or other external infrastructure.
However, there are still a number of problems with Visual
SLAM which make its practical application challenging.
SLAM algorithms in general have non-constant computa-
tion time as more and more landmarks are observed, and
managing and reducing this computational load is still a
focus of ongoing research. Current Visual SLAM systems
can use either a video camera alone (e.g. [29]) or a video
camera with low-quality MEMS-based inertial sensors (e.g.
[28]), and can provide impressive navigational accuracy and
stability. Unfortunately, they rely on the assumption that
the environment is bounded and relatively small, so that an
excessive and growing collection of landmarks does not slow
down the processor. This assumption is not valid for MAV
platforms, which must navigate in extremely large unexplored
environments. Furthermore, in navigation applications, the



landmark locations are typically not of interest, meaning that
much of this computational burden, while providing greater
accuracy, does not contribute directly to the desired result.

In this work, our proposed scenario is a system in which
GPS is typically available, but may drop out for an interme-
diate length of time (several tens of seconds). Our goal, then,
is not to produce estimates that do not accumulate error, but
estimates that accumulate error slowly enough that they are
still accurate within this time window. Visual Odometry (VO)
methods are a viable means of performing vision-based pose
estimation under this scenario. Named in analogy to wheeled-
robot odometry, VO methods use computer vision algorithms
to estimate the relative orientation between image frames.
With any VO method, then, the key goal is to somehow
decrease the amount of error introduced at each step, thereby
slowing the growth of error sufficiently that pose estimates
are valid within a desired time window.

In this work, we employ two strategies to improve the
error characteristics of VO. First, we utilize a novel VO
system based upon prior work by Dellaert et al. [30], [31].
Our VO system uses a direct image registration algorithm,
estimating a single parametric transformation mapping pixels
in an image to ground locations. This is in contrast to more
standard feature-based image registration methods, which
track a series of feature points and use their motion to
infer the relative pose between frames. Direct registration
is generally able to produce more accurate results than such
feature-based methods; this increased registration accuracy
helps to slow the accumulation of pose error.

The second method we use to slow VO error growth is to
fuse VO measurements with INS data in an EKF framework.
In the literature, a technique known as vision-assisted inertial
navigation [32], [33], [34], [35], [36], [37, references therein]
is the usual method of doing this. Current techniques use the
INS to provide relative measurements of the pose parameters,
and these relative measurements are integrated in the EKF
time update step to provide absolute pose. The relative pose
measurements provided by VO are used in the EKF measure-
ment update step to correct drift in this INS pose estimate.
SLAM methods which incorporate inertial sensors similarly
use inertial measurements in the time update (e.g. [25], [28]).
In this work, we fuse INS and vision in a different way:
rather than performing vision-assisted inertial navigation, we
propose to perform inertially-aided visual odometry. The
distinction is somewhat subtle, but nevertheless significant.
One key contribution of this work is that we interpret INS
measurements in a different way than the standard vision-
aided inertial navigation literature, allowing us to make use
of a low-quality MEMS-based INS without inducing INS
integration error. This is in contrast to most vision-assisted
inertial navigation literature, where the assumption is usually
made that a relatively high fidelity INS system is available,
or else that another sensor can slow or stop the drift induced
by a low quality INS. Another interpretation is possible,
however: the three-axis accelerometers in the INS measure

the acceleration of the aircraft in each dimension, which for
a fixed wing aircraft, will primarily measure the direction
of the gravity vector. This information allows us to directly
compute the pitch and roll of the aircraft [23]. INS data
has been interpreted in this way in the computer vision
community to estimate the pose of a camera [38], [39] as
well as to perform such tasks as scene reconstruction and
camera calibration [40], [41], [42]. Combining these pitch
and roll estimates with the altitude estimate obtained from
the INS pressure sensors, we have a complete estimate of
the aviation pose parameters of the aircraft. Many current
MAV systems interpret INS data in this way [1], [22], [2]:
however, to our knowledge ours is the first work to apply
this information to MAVs in a VO setting. Because we
interpret the INS data as providing absolute measurements
of the aviation pose parameters of the aircraft, we use INS
data in the EKF measurement update, rather than as a time
update. Since VO measures the relative pose between frames,
we use VO measurements in the time-update step. Thus,
VO is the main means of estimating aircraft pose, and its
accuracy is improved by incorporating measurements of the
aviation parameters from the INS. Use of VO as the time-
update step in an EKF framework requires that we be able
to propagate both the MAV pose and its covariance matrix.
The standard EKF method for doing this (linearizing the
time update function) will not work with our proposed VO
system, as it is neither differentiable nor available in closed
form. The second major contribution of this section is thus
a novel means of estimating uncertainty associated with our
VO estimates.

In the remainder of this section, we first give a general
overview of our pose estimation system (Section III-A), and
then describe our VO method and the underlying direct
image registration method (Section III-B), giving further
background on existing VO methods. We then develop our
proposed method of uncertainty propagation through the
VO system (Section III-C). Finally, we will present MAV
flight results obtained using our method (Section III-D)
with a discussion of the computational requirements of this
algorithm.

A. Proposed System Overview

The operation of our pose estimation framework is sum-
marized in Figure 4. The goal of this system is to estimate
the pose of the aircraft, which we represent with a 6-vector
χ:

χ =
[
tx ty tz ψ θ φ

]T
,



Fig. 4. Layout of our GPS/INS/VO pose estimation system

composed of a 3-D location state (tx, ty, tz) and three Euler
angles(ψ, θ, φ) representing attitude (yaw3, pitch, and roll).
Video frames Yn and Yn−1 from an MAV camera are fed into
the VO system, along with current pose estimates. The VO
system then produces an estimated pose χVn for each new
video frame Yn, using the image data Yn−1 and estimated
pose χ̂n−1 of the previous frame.

Independently, information from other on-board sensors
are fed into the GPS/INS pose estimation system, which
separately estimates a pose χGn of the aircraft at the time
each frame was taken. If GPS is unavailable, this estimate
includes only the aviation parameters, which can be obtained
from the INS alone. In our system, altitude is computed
directly from the autopilot pressure sensors, while pitch and
roll are computed by combining accelerometer and rate gyro
measurements in a complimentary filter. Pitch/roll states are
propagated forward in time using rate measurements from
the gyroscopes. Accelerometer measurements are used to
give bounded error estimates of pitch and roll, computed
according to the following formula:[
Ax Ay Az

]
≡ accelerometer readings

φacc = tan−1

(
Ay
−Az

)
θacc = tan−1

(
Ax

−Ay sin (φ)−Az cos (φ)

)
.

The weighted sum of the accelerometer based measurements
and predicted states become the new pitch/roll estimates. If
the aircraft is turning, the accelerometers will measure not
only the lift force opposing gravity, but also extra acceleration
from the d’Alembert force due to centripetal acceleration.
To help account for this fact, the relative weight of the

3Yaw is typically defined as the compass direction in which the nose of
the aircraft is pointing, while heading is the direction in which the aircraft
is moving. If the aircraft is flying with a ’crab angle’ (i.e. the nose is not
pointing exactly in the direction of flight) due to wind conditions, these two
quantities will not be identical. Pose estimates obtained using VO provide
yaw information, while heading estimates can be provided directly by GPS.
Heading can also be estimated by using the difference in location estimates.

accelerometer-based measurements is reduced as the turn
rate of the MAV increases, causing the system to rely more
heavily on the propagated values. In our experience, this
method produces sufficiently accurate estimates to enable
MAV navigation (see [23]).

Because these INS based pose measurements have
bounded error as we have discussed, we model this estimate
as the true pose of the aircraft corrupted with zero-mean
Gaussian noise (ν):

GPS unavailable: χGn =
[
tz θ φ

]T + ν. (26)

We desire to fuse these partial measurements of aircraft pose
with the pose information from the VO system using an EKF
framework. The standard EKF framework estimates the state
of a system given knowledge of the system dynamics and
measurements that are functions of the state:

χn = f (χn−1, un) + η (27)
yn = h (χn) + ν (28)

where η and ν are zero-mean, Gaussian random vectors with
covariance matrices Q and R respectively. At each time step,
we estimate the new state of the system and its covariance
from the previous state:

χ̂−n = f (χ̂n−1, un) (29)
P̂−n = FP̂n−1F

T +Q (30)

where the matrix F is the jacobian of the system dynamics
function:

F =
∂f
∂χ

∣∣∣∣
χ=χ̂n−1,u=un

. (31)

When a measurement becomes available, we incorporate
the information it provides about the state, performing what
is known as a measurement update step:

χ̂n = χ̂−n +K
(
yn − h

(
χ̂−n
))

(32)

P̂n = (I −KH) P̂−n (33)

where H is the jacobian of the measurement function (anal-
ogous to F ):

H =
∂h
∂χ

∣∣∣∣
χ=χ̂−

(34)

As we have discussed, we use the aviation parameters
available from the INS as our measurement function. This
means that our h function is in fact just a linear operator,
and we can find H directly:

y =

 θ
φ
tz

 = h (χ)

=

 0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0


︸ ︷︷ ︸

H

χ. (35)



By contrast, the time update in our EKF will come from
VO, meaning that our f function represents the VO system
as follows:

χ−n = f (χn−1)
= vo system (χn−1, Yn−1, Yn) . (36)

In the next section, we will describe the operation of our
VO pose estimation system, which is represented by the
function f (·) . We will then proceed in section III-C to
approximate F , enabling us to implement equation (30).

B. Visual Odometry System

Several VO frameworks are delineated in the literature.
Most commonly used existing methods function by detect-
ing and tracking feature points between frames in a video
sequence, and using the motion of these points to estimate the
relative pose between frames. This is done by using feature
point motion to estimate either the essential matrix [43], [44],
[45], [46], [47] or a homography [48], [49] relating pairs or
sets of frames, and then decomposing these matrices [50],
[51] to find the relative pose.

All VO methods share a common implementation chal-
lenge that must be addressed to allow absolute pose to be
estimated. This problem is that of determining the scale factor
of the estimated relative pose. Because a video camera is
a bearing-only sensor and provides no depth information,
it is impossible to distinguish whether a pair of frames
are widely separated and observing large, distant objects or
closely spaced and observing small, nearby objects. If care is
not taken to ensure that relative pose estimates are expressed
in the same scale then gross errors in absolute pose estimates
can be accumulated very rapidly. This problem is typically
addressed in the literature by triangulating the 3-D location
of feature points common between two frame pairs.

In this work, we propose a novel VO strategy, based
upon prior work by Dellaert et al. [30], [31]. Rather than
infer the inter-frame relative pose by using the motion of
extracted feature locations, we directly compute the absolute
pose of the second frame from the absolute pose of the first
frame by means of an iterative image registration approach.
This approach works by projecting the first observed image
onto the terrain and rendering a view of this projected data
from the currently estimated pose of the second frame. The
estimated pose of the second frame is iteratively adjusted by
means of image jacobians to make the second frame and the
re-projected first frame match as closely as possible. Thus,
this method directly estimates a single parametric transform
using the captured image as a whole, rather than the estimated
motion of selected feature points. This fact typically allows
direct image registration methods to provide greater accuracy
in image registration. Furthermore, since the absolute pose of
each frame is estimated, the scale factor problem is handled
implicitly.

Direct image registration such as we are performing
depends upon three main assumptions: (1) that the scene
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Fig. 5. Our method for computing the pose of the MAV when Image 2
was captured assuming Image 1’s pose is perfectly known.

being imaged is planar, (2) that all image motion is due to
camera motion, meaning that motion due to independently
moving objects is negligible, (3) there is sufficient texture in
the imaged scene to allow the iterative descent registration
algorithm to avoid converging to a local minimum.

While the planarity assumption is not appropriate for
ground-based robots, it is generally a reasonable assumption
in other applications. Unmanned Underwater Vehicle appli-
cations [52], [53], [54] commonly make this assumption. As
MAVs are typically relatively distant from the terrain they
observe, this assumption is often workable in many fixed-
wing MAV situations. In addition, we have found that our
direct registration algorithm is robust to small amounts of
non-planarities (e.g. trees, small structures) in the images.
This is a reasonable scenario for many applications; low
flights in complicated (e.g. urban) terrain will violate this
assumption, however.

The assumption that objects do not move independently
is not problematic in most environments. At typical MAV
altitudes, any moving objects will occupy only a tiny fraction
of a captured image, and thus will have little effect on image
registration. This assumption will fail in some cases (i.e.
viewing a highway with heavy, fast-moving traffic) but will
be a good assumption in many others.

Sufficient image texture is also usually a good assumption:
most UAV flights are daytime flights, and most real flight
environments contain significant visual texture. Certain flight
environments could of course cause the direct image regis-
tration to not converge. In general, however, our practical
experience suggests that direct registration is more robust
than feature-based methods in low-texture video.

Our VO algorithm for estimating the current pose of the
MAV is illustrated in Figure 5. To estimate the pose of
video frame Y2 (or rather, the pose of the aircraft when this
frame was captured), we assume that a previous frame Y1 is
available with associated pose information χ̂1 for that frame.
We also assume that we have a coarse estimate of the pose



from which Y2 was captured
(
χE2
)
. This coarse estimate

could be obtained from the current GPS/INS estimate χG2 ,
the pose of the previous frame χ̂1, or the result of a quick
feature-based motion estimation algorithm. When registering
sequential video frames (30 fps frame rate), simply using
the pose of the previous frame as the initial pose estimate(
i.e. let χE2 = χ̂1

)
was found to produce the most rapid

convergence, as the aircraft typically did not move far enough
in one frame interval to make this a bad initial guess. The
goal of our algorithm is to compute a more refined estimate
χV2 of the MAV pose when frame Y2 was captured.

The first step shown in Figure 5 is to project Y1 onto a
ground image. The projection process assumes that the terrain
over which the MAV is flying is planar and horizontal and
uses the estimated pose χ̂1 with respect to this ground plane
to produce an ortho-rectified image of the region of ground
observed by Y1. This projection is computed by perspective
warping: i.e. the ground image is a perspectively warped ver-
sion of the captured image. Rather than interpolating between
pixel values, a gaussian point spread function is assumed to
act on each pixel value, and the perspective projection of
this point spread function determines the amount by which
each pixel in Y1 affects each ground image pixel. Further
explanation and details of this warping process are given by
Dellaert et al. [30], [31].

Once we have inferred the appearance of the ground plane
using image Y1, we desire to iteratively refine our initial
pose estimate for Y2. At the kth iteration, we produce a
rendered image Y r2 (k) of this ground image using the current
pose estimate χV2 (k) for image Y2. This rendering process is
simply the inverse of the projection process, and is performed
using a projectively distorted gaussian point spread function
to determine the amount by which each ground pixel affects a
given pixel in Y r2 (k). The rendered image Y r2 (k) represents
the visual information in Y1 as it would appear in Y2,
assuming that the poses χ̂1 and χV2 (k) used for projection
and rendering were accurate. The difference or residual
image (Y r2 (k)− Y2) provides information about the error
in the current pose estimate χV2 (k). To determine an update
∆χV2 (k) to the current pose estimate, we use a variant of the
popular Lucas-Kanade image registration method [55], based
on Gauss-Newton gradient descent. We attempt to choose
∆χV2 (k) to minimize the pixel for pixel squared magnitude
of the residual image:

J =
∑
p∈P

(
Y2,p − Y r2,p

)2
(37)

where P is the set of all pixels in image Y2, Y r2,p are
the pixels in the rendered image and Y2,p are the pixels
in Image 2. A Gauss-Newton iteration essentially consists
of computing partial derivatives of the residual image with
respect to all of the pose parameters. Each of these partial
derivative images approximates the change in the residual
image caused by a differential change in the associated pose
parameter. The goal at each iteration is to express the residual

Fig. 7. Residual image differences produced by our direct registration
method (left image) and a standard feature-based registration method
(right image). Feature-based registration was performed on a 640 ×
480 video sequence, tracking Harris corners between frames using the
OpenCVTMtoolbox, using RANSAC to estimate a homography matrix
relating each frame pair, and warping the first frame to align it with the
second. Direct registration was performed using the method indicated in
this section on a 4× downsampled version of the same video. Direct
registration is able to consistently reduce the minimum mean squared pixel
error compared to feature based registration.

image as a weighted sum of the different Jacobian images,
after which the pose is changed according to these weights. A
graphical example of a single iteration is shown in Figure 6.

As discussed in [30], [31], the partial derivatives or “Jaco-
bian Images” of the residual can be approximated using the
chain rule as follows:

∂Y r2
∂�︸ ︷︷ ︸

Jacobian Image

=
∂Y r2
∂x︸ ︷︷ ︸
∇x

∂x

∂�
+
∂Y r2
∂y︸ ︷︷ ︸
∇y

∂y

∂�
(38)

Each of the terms in this equation represents an “image” or
matrix of values, one for each pixel location. The symbol �
represents one of the six pose parameters [tx, ty,tz, ψ, θ, φ],
and the terms labeled ∇x and ∇y are gradients of the
rendered image, i.e. partial derivatives of the luminance
function in the vertical and horizontal image directions. The
∂y
∂� and ∂x

∂� terms represent the differential location change
of the image of the preimage of each image point. That is,
each pixel location (x, y) is imaging a particular world point
P , and a differential change in any pose parameter (�) will
cause a differential change in the (x, y) image coordinates of
the projection of P . The ∂y

∂� and ∂x
∂� terms thus represent the

way in which a feature observed at any point in the image
will appear to move due to a differential change in the pose
parameter �. After multiple iterations like the one shown
in Figure 6, the estimated change (∆χV2 (k)) in the pose
estimate will become very small. At this point, the current
pose estimate χV2 (k) becomes the final χV2 returned from
our VO algorithm.

Figure 7 demonstrates the potential improvement in reg-
istration given by direct registration methods versus more
standard feature-based image registration. Since more accu-
rate pixel registration implies more accurate relative pose
estimates, improved accuracy can lead to slower growth in
VO pose estimates, leading to more accurate overall pose
estimates.
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Fig. 6. An example iteration of the image registration process using our Gauss-Newton registration method. In subfigure (a), a difference image is created
to evaluate how accurate the current pose estimate is. In subfigure (b), the new pose (New est) is computed using the difference image and the Jacobian
images.

C. VO Covariance Estimation

As discussed in Section III-A, to fuse INS and VO
measurements in an EKF framework, we need to be able
to find the matrix

F =
∂f
∂χ

∣∣∣∣
χ=χ̂n−1

that linearly approximates the state transition function. The
state transition function f in our EKF is the VO system
described in the previous section, which produces the current
aircraft pose χV2 given the estimated previous pose χ̂1.
Unfortunately, this f function is not differentiable, and is
expressed only as an iterative algorithm, not in mathematical
closed form. In this section, we will make some simplifying
assumptions that allow us to approximate the jacobian F of
this algorithm. This will allow us to propagate covariance in
pose χ1to covariance on pose χV2 , enabling the fusion of VO
and INS measurements.

The final χV2 produced by our VO system is a function
of both the pose χ̂1 and the two images Y1 and Y2. The
interplay of these two images in the iterative image reg-
istration algorithm leads to a non-differentiable f . Stated
differently, changes in χV2 can be due either to changes
in the quality of image registration between Y1 and Y2 or
due to changes in the original pose χ̂1: this fact makes
it impossible to differentiate f directly. Even if we could
parametrize and precisely describe “the quality of image reg-

istration” in a meaningful way, differentiating f with respect
to this parametrization would still involve differentiation of
an iterative procedure. To rectify this situation, we will first
assume in Section III-C1 that the image registration process
is able to perfectly register Y1 with Y2: this is the same as
assuming that all our uncertainty about the final pose χV2 is
due to propagated uncertainty in χ̂1. We will find the desired
matrix F using this assumption. We will then discuss error
due to mis-registration in Section III-C2.

1) Propagating Errors in Image 1 Pose to Image 2: In
order to find the component of uncertainty on χV2 (due to
propagation of uncertainty from χ̂1), we need to be able
to characterize the function f (·) such that χV2 = f (χ̂1).
We seek to linearize this function so that we can perform a
standard linear covariance update PV2 = FP̂1F

T . To begin,
we note that once the iterative image registration process
has converged, χ̂1 and χV2 can each be used to compute
the homography matrices HG1 and HG2, which map pixel
locations in images Y1 and Y2 respectively to locations on the
ground image. These homographies were used respectively in
the projection and rendering processes of the VO system (see
Section III-B), and are thus available from the VO process.
HG1 and HG2 individually have uncertainty associated with
them, because each of their components is a function of
χ̂1 and χV2 , which are imperfectly known and thus have
associated covariances. Because homography matrices can be
composed by matrix multiplication and are invertible [56],



[51], we can combine these two homography matrices into a
single homography that maps pixel locations in Y1 to pixel
locations in Y2 as:

H12 = HG2H
−1
G1 = HG2H1G (39)

If, as we have assumed, the registration between Y1 and Y2

is perfectly accurate, then this homography H12 is perfectly
known. Thus, although both HG2 and H1G (the inverse of
HG1) have associated uncertainty, their product H12 does
not. This observation is a direct consequence of the fact that
VO methods fundamentally measure relative poses: while χ1

and χ2 may both be incorrect, the accuracy of the relationship
between them is constrained only by the accuracy of image
registration.

The relationship in equation 39 forms the basis of our
desired f (·). We first post-multiply by HG1:

HG2 = H12HG1 (40)

Our insight about HG1,HG2, and H12 allows us to write:

HG2 (χ2) = H12HG1 (χ1)

In order to isolate χ2 as a function of χ1 from this last
equation, it would be desirable if we could invert the function
HG2 (χ2); we would like to be able to deduce the pose of a
camera given a homography mapping its image points to the
ground. We will refer to this inverse function as ξ instead of
H−1
G2 , to emphasize the fact that the inverse we would like is

not the matrix inverse of the matrix HG2, but rather a function
mapping a homography matrix to a pose. If we could find
such a function, we would have our desired formula for f :

ξ
(
HG2

(
χV2
))

= ξ (H12HG1 (χ̂1)) (41)

χV2 = ξ (H12HG1 (χ̂1)) (42)
χV2 = f (χ̂1) (43)

We could then compute the desired derivative F by the chain
rule:

∂f
∂χ̂1

=
∂χV2
∂χ̂1

=
∂ξ

∂HG2

∂HG2

∂HG1

∂HG1

∂χ̂1
(44)

The function HG1 (χ̂1) can already be computed in closed
form using standard computer vision techniques, and its
derivative, the term ∂HG1

∂χ̂1
in equation 44 is a 9 × 6 matrix

of partial derivatives that can be computed from this closed
form expression in a straightforward manner. The term ∂HG2

∂HG1
is a 9×9 matrix of partial derivatives: these partials are also
straightforward to compute, as they are simply elements of
H12 (see equation 40).

The only remaining obstacle is the first term in equa-
tion 44, determining the derivative of the ξ function. As
discussed in [51], there are well documented methods of
decomposing a homography matrix to determine a relative
pose; these methods, however, in general produce four solu-
tions among which we must choose based on the cheirality
constraint. This fact makes the ξ function non-differentiable.
Instead of attempting to differentiate ξ directly, we notice

that we can approximate changes in the homography matrix
HG2 due to changes in χV2 using the partial derivative matrix
∂HG2
∂χ2

, just as we do for HG1. The inverse of this linear
mapping, if it existed, would give changes in χV2 due to
changes in HG2 as desired. The inverse does not exist,
as the 9 × 6 matrix ∂HG2

∂χV
2

represents an over-determined
system. We can, however, find the pseudo-inverse of the
matrix ∂HG2

∂χ2
, which still maps changes in HG2 to changes

in χ2, minimizing error in the elements of HG2 . We use this
pseudo-inverse to approximate the derivative ∂ξ

∂HG2
.

Combining these three terms, we compute the 6×6 matrix
of partial derivatives ∂χV

2
∂χ̂1

as:

∂χV2
∂χ̂1

=
(
QTQ

)−1
QT

∂HG2

∂HG1

∂HG1

∂χ̂1
(45)

where

Q =
∂HG2

∂χV2
(46)

We now have the desired partial derivative matrix of our
VO method, which we can use to approximate covariance
propagation.

2) Determining covariance with imperfect registration:
Naturally, the process of determining H12 (i.e. registration)
is not, as we assumed in the previous subsection, without
error. This registration error will cause the difference image
to have residual structure (which is not due to parallax) after
the registration process completes. We address this source of
error by computing the ratio of the residual cost function J
of equation 37 with an empirically determined cost value,
and boosting the diagonal values of the covariance matrix
PV2 proportionally. Doing this is similar to the “Q-boosting”
technique common in EKF practice: we simply increase our
estimated uncertainty on the VO pose such that the overall
filter yields desirable results. In practice, this extra boost in
the diagonal elements of PV2 was not found to be necessary
to yield good results, and was not used in generating result
data.

D. Results and Analysis

In order to evaluate our pose estimation framework, we
estimate MAV pose without using GPS information, and
show that fusion of VO and INS information allows MAV
location to be estimated with accuracy similar to that of GPS
for a reasonable period of time.

All results presented in this work are collected using
an inexpensive, hand-launchable MAV platform, shown in
Figure 8. The aircraft is a flying wing design, with a 6-
foot wingspan, constructed of EPP foam. The on-board
KestrelTMautopilot and associated Virtual CockpitTMsoftware
platform allow the aircraft to autonomously aviate and nav-
igate. The KestrelTMautopilot comprises a small microcon-
troller and a collection of sensors that includes three-axis
accelerometers, rate gyroscopes, and differential pressure
sensors. Pitch, roll, and altitude are estimated on-board from



these sensor readings, while 2-D location and heading are
estimated using a small on-board GPS receiver [1], [23].
This pose estimate and other telemetry data is transmitted
to a ground station at a rate of about 4 Hz. A separate
camera/transmitter system collects video footage during flight
and transmits this video to the ground station. This video
stream is synchronized on the ground station with the stream
of pose estimates from autopilot telemetry. VO and sensor
fusion are performed off-line using this data.

1) Pose Estimation during GPS dropout: A key goal of
this work is to explore the use of VO for MAV localization
during GPS dropout. In order to evaluate the accuracy of
our fused VO/INS pose estimates, we compare the estimated
(tx, ty, tz) location of the aircraft with baseline location
measurements produced by the current MAV autopilot pose
estimation method, which uses a GPS receiver to measure
tx and ty , and a differential pressure sensor to measure tz .
We will hereafter refer to these baseline pose estimates as
gpsins pose estimates. These baseline location estimates
are here compared with location estimates from:

1) Our unaided VO system (referred to as voonly)
shown in Figure 9

2) Our fusion system, incorporating only VO and INS
measurements (referred to as voins) shown in Fig-
ure 10.

In each of these figures, we display the path of the MAV
as estimated by gpsins and by one of the vision-aided
fusion schemes, giving both a horizontal and vertical view
(subfigures (a) and (b), respectively), and plot the time-
varying distance between these two paths (subfigure (c)).
Clearly the errors in voonly location are both much larger
than those of voins, and increase dramatically over the
course of the flight (∼70 seconds). This demonstrates that
fusion of VO and INS data can significantly reduce the
drift in location estimates that is inherently part of VO
systems, as well as dramatically reducing (˜40%) the worst-
case location error. It is also meaningful to realize that the
cyclic pattern of errors present in Figures 9(c) and 10(c) is
likely a consequence of inaccuracies in camera mounting,
wind estimation, and temporal data association. It is perhaps
remarkable that position can be estimated to within <40m
of GPS estimates in the presence of these inaccuracies. As
the size, cost, and field use constraints on MAV platforms
necessarily make them prone to these errors, the ability to
function in their presence is an important benefit for MAV
platforms. It should be noted that this error is comparable
to the error obtained by some SLAM-based visual/inertial
navigation solutions, such as that of Kim and Sukkarieh[25]
and Bryson and Sukkarieh[26] (whose flight path is similar to
ours). Several other SLAM-based solutions give much better
accuracy in simulation (e.g. [57]) or in limited environments
with relatively rapid loop closure (e.g. [29]).

2) Computational Complexity: The results given here are
presented as a proof of concept. The navigational results
shown were obtained using real flight data, but processing

was performed offline, in a framework that was not optimized
for speed. A number of further optimizations are possible,
which we feel would allow our estimation framework to
run at a frame rate of about 5Hz or better on computing
hardware compatible with MAV weight & power constraints
(˜1.5 GHz standard laptop-style CPU). These optimizations
could include the following:
• The simulation environment is currently coded in MAT-

LAB, and no MEX functions are utilized. A functioning
system would need a C/C++ implementation, which in
itself would bring performance significantly closer to
realtime.

• We currently perform forward additive image registra-
tion: that is, the second image is repeatedly warped
(requiring expensive recomputation of image jacobians)
until it matches the first image. Baker et al. [55] present
several ways of improving on this, notably the inverse
compositional method, which needs to compute jaco-
bians only once and applies the inverse of the computed
warping to the first image. This could also significantly
reduce computational load.

• Not all pixels need actually be compared during the
direct registration process: only a sampling of pixels
would be needed. This could significantly reduce com-
putation costs.

Memory requirements associated with this method are both
fixed and reasonable, as only the previous video frame and
the vehicle state estimates need to be stored.

IV. A REDUCED-DRIFT APPROACH FOR
VISUAL/IMU-FUSION BASED NAVIGATION

As shown in the prior section, there are significant advan-
tages to fusing together data from inertial and visual sensors.
However, there are significant computational costs associated
with the method from Section III. Similarly, for the most
accurate navigation estimate possible, a batch method that
analyzes all vision and IMU information from an entire flight
was introduced in [58]. While accurate, this method cannot be
utilized in real-time due to nature of batch optimization rou-
tines. Therefore, the paper also introduces a recursive method
which is essentially a SLAM filter. Other implementations of
SLAM-based filters for navigation can also be found in [59],
[60], [61]. While SLAM-based methods are highly effective,
there are two bottlenecks to SLAM that make them difficult
to implement in the computationally-limited environments
that characterize MAVs. First, visual SLAM requires that
objects in the video be tracked for an extended period of
time. Second, the size of the state grows with the number
of landmarks that SLAM is attempting to find the location
for, dramatically increasing the computation time required. In
[62], the size of the state is limited, but tracking of features
over a long period of time is still required.

While it is computationally expensive to track points for
an extended period of time in video, it is relatively simple to
track points over a small number of video frames. Therefore,



(a) MAV (b) KestrelTMAutopilot

Fig. 8. The MAV platform used in this work. The MAV is a flying wing aircraft constructed of EPP foam with a 6 foot wingspan, controlled by a
KestrelTMautopilot.

we focus in this section on a method that utilizes only the
relationship between objects in two frames of video. Other
methods that utilize only two frames of video ([63], [64],
[65]) have been introduced previously. [64], [65], however,
requires that the terrain being observed is planar, while we
assume in this section that the points being tracked from
frame to frame are not planar (a better assumption for indoor
or dense environments that would obscure GPS signals).

In this section, we focus on utilizing the epipolar con-
straint for fusing visual measurements with the IMU as
described in [63]. Using the epipolar constraint, however,
has three significant weaknesses that must be addressed
when performing fusion with IMU measurements for MAV
navigation. First, the epipolar constraint biases movements of
the camera toward the center of points in the image. Second,
visual measurements always include a “scale ambiguity” –
it is impossible to distinguish between the camera moving
quickly and observing an object that is far away and the
camera moving slowly and observing an object that is close.
Third, when using vision to navigate, the navigation state of
the camera can only be determined relative to its previous
navigation states. 4

In this section, we present methods to overcome each of
these three weaknesses in utilizing the epipolar constraint.
First, to overcome the bias in the epipolar constraint, we ana-
lyze the epipolar constraint equation and propose an alternate
algorithm for computing deviations from the epipolar con-
straint. Second, to overcome the scale ambiguity of vision,
we integrate a differential air pressure sensor into the fusion
system. On a fixed-wing MAV, the differential air pressure
sensor is capable of measuring the airspeed of the MAV.

4Note that while it is possible to determine absolute position or attitude
using vision, knowledge of pre-existing visual “landmarks” is required. We
do not address these techniques in this section as we are interested in using
MAVs to explore new areas, not fly over pre-mapped areas.

This airspeed can be treated as a direct measurement of the
velocity magnitude, allowing the scale ambiguity of vision to
be overcome. Third, because vision measurements of motion
are relative, we propose using the minimal sampling rate
at which vision can be effectively fused with IMU data.
We demonstrate that sampling at the minimal, rather than
maximal, rate increases the accuracy of the overall navigation
system. We also discuss limitations on choosing the minimal
sampling rate.

Once the weaknesses of epipolar-based fusion are over-
come, it is possible to enable on-line estimation of inertial
sensor biases. We prove this capability by performing an
observability analysis of a simplified system, and demonstrate
improved navigation results when estimating biases.

The remainder of this section is organized as follows. In
Section IV-A, we discuss the general framework used for
fusing vision and IMU information. In Section IV-B, we
describe our three modifications for improving the fusion of
visual and IMU information. In Section IV-C, we describe
our method for estimating the biases of the inertial sensors.
Section VII-B demonstrates the improvement in navigation
state estimates achieved by implementing our modifications.

A. Epipolar constraint-based fusion

In this section, we first describe the epipolar constraint
which is used in our fusion setup. We then describe how the
epipolar constraint can be used in a Kalman filter to enable
fusion between visual and inertial information.

1) The epipolar constraint: The epipolar constraint can
be utilized whenever a single fixed object is observed by
a camera at two locations (or two cameras at different
locations). Given that any three points in the world form
a plane, a single world point and the two camera projection
centers form a plane in the 3-D world – the epipolar plane.
Similarly, when a world point is observed in two images, the



−60 −40 −20 0 20 40 60

−80

−60

−40

−20

0

20

40

60

East Location (meters)

N
o

rt
h

 L
o

c
a

ti
o

n
 (

m
e

te
rs

)

(a)

−60 −40 −20 0 20 40 60

50

60

70

80

90

100

110

East Location (meters)
A

lt
it
u

d
e

 (
m

e
te

rs
)

(b)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Distance from GPS location to voonly location vs. time

time since beginning of flight (seconds)

e
u

c
lid

e
a

n
 d

is
ta

n
c
e

 (
m

e
te

rs
)

(c)

Fig. 9. (a,b) gpsins location estimates (blue +) and voonly location estimates (green �) in a circular flight path.
(c) Euclidean distance between gpsins and voonly location estimates at each point in time. Note rapid error growth.
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Fig. 10. (a,b) gpsins location estimates (blue +) and voins location estimates (green �) in a circular flight path.
(c) Euclidean distance between gpsins and voins location estimates at each point in time. Notice the slow growth of error as compared to Figure 9(c).



two vectors representing where the point was observed in the
image plane (~x′ and ~x), and the translation vector between the
two camera locations, will all lie on the epipolar plane.5 By
assigning a unique coordinate frame to each camera location,
this constraint is represented by the formula

~x′[~pc2c1]×Cc2
c1~x = 0, (47)

where Cc2
c1 is the direction cosine matrix between the camera

coordinate frames and [~pc2c1]× is the position of camera 1
in the second camera’s coordinate frame, put into a skew-
symmetric matrix. (In other words, we calculate the cross
product between ~pc2c1 and Cc2

c1~x.) This constraint enforces that
the three vectors ~x′, Cc2

c1~x, and ~pc2c1 all lie within the same
plane in the 3-D world.

2) Utilizing the epipolar constraint in a fusion environ-
ment: To utilize the epipolar constraint in a fusion envi-
ronment, we created an Unscented Kalman Filter (UKF)
framework. The state in the Kalman filter must contain
enough information to generate both Cc2

c1 and ~pc2c1 during
the measurement step. To represent general motion by an
MAV between two different locations, the UKF state ~X =[

χt
χt−1

]
is used, where χt is the navigation state estimate

at time t and χt−1 is the navigation state estimate at the
previous time. The navigation state at each time contains pt,
the position of the camera at time t in the inertial frame,
Ct, the direction cosine matrix relating the inertial frame to
the current camera coordinate frame, and vt, the velocity
of the camera at time t. This method for setting up the
UKF to enable vision and inertial information fusion was
first introduced in [65].

Performing the time update
The time update for this UKF implementation takes two dif-
ferent forms. The first form updates χt (the first 10 elements
of the current state) every time an IMU measurement occurs.
This makes the first 10 elements of the state the most recent
navigation state estimate. After each measurement update,
the state is also updated using the formula

~X+ = A ~X− where (48)

A =
[
I 0
I 0

]
, (49)

causing the current state to become ~X =
[
χt
χt

]
. The first

10 elements of the state vector are then updated by IMU

measurements to realize a new current state X =
[
χt+1

χt

]
.

With this technique, the two most recent χ estimates, cor-
responding to the time of the two most recently captured
images, are always stored as the current state.

5Note that image locations are typically in pixels, while the discussion of
vectors so far assumes all vectors are in an unscaled, Euclidean space. In
this work, we assume that the camera has been calibrated a-priori and that
the conversion from image to Euclidean vectors has already occurred using
this calibration information.

Performing the measurement update
To utilize the epipolar constraint as a measurement in a
UKF framework, the “Dynamic Vision” approach introduced
in [63] is used. Assuming a feature has been detected in two
images, the locations of the features are represented by ~x′ and
~x. Because the epipolar constraint should always be equal
to zero, the “measurement” used by the UKF is a vector of
zeros in length equal to the number of corresponding features
found between the two images. The predicted measurement
is ~x′[~pc2c1]×Cc2

c1~x (from Equation (84)) for each set of features
~x′ and ~x, where ~pc2c1 and Cc2

c1 are functions of χt and χt−1.
While the Dynamic Vision method yields good results in

certain cases, it does exhibit some weaknesses that need
to be addressed for use on an MAV. First, the translation
direction estimates are biased in the direction the camera
is pointing. Second, as with all vision-based approaches, it
does not estimate the magnitude of translation. We propose
methods for overcoming these weaknesses in the following
section.

B. Improving the fusion of visual and IMU sensors

In this section, we propose three modifications to baseline
epipolar constraint-based fusion of IMU and visual infor-
mation to significantly increase the accuracy of navigation
state estimation on MAVs. These modifications overcome the
centering bias, scale ambiguity, and sampling rate problems
discussed in the introduction.

1) Overcoming bias toward the center of image points:
When using the epipolar constraint to fuse inertial and vision
sensors together, the fusion system introduces a bias in
estimated translation direction toward the center of the points
observed from frame to frame. To understand the source of
this error, let us analyze the epipolar constraint when the
result of Equation (84) is not zero. The value x′[~pc2c1]×Cc2

c1x
can be rewritten as a cross product of two vectors followed
by a dot product of two vectors. The final results of this
computation will be

||x′|| ||~pc2c1|| ||x|| sin(θ~pc2
c1→Cc2

c1x
) cos(θx′→[~pc2

c1]×Cc2
c1x

), (50)

where θ~pc2
c1→Cc2

c1x
is the angle between ~pc2c1 and Cc2

c1x and
θx′→[~pc2

c1]×Cc2
c1x

is the angle between x′ and [~pc2c1]×Cc2
c1x.

As mentioned previously, the correct magnitude for these
values is 0. Therefore, the UKF will attempt to set χt and
χt−1 in its state vector such that the resulting ~pc2c1 and Cc2

c1

minimizes the set of all measurements. However, there are
two ways to push the set of measurements toward zero: (1)
the epipolar constraint can be met by setting [~pc2c1]×Cc2

c1x to
be orthogonal to x′ (i.e., set cos(θx′→[~pc2

c1]×Cc2
c1x

) = 0), or (2)
~pc2c1 can be set parallel to Cc2

c1x (i.e., set sin(θ~pc2
c1→Cc2

c1x
) = 0).

To meet the first condition, Cc2
c1x, pc2c1, and x′ must all lie in a

plane, the original justification behind the epipolar constraint.
The second condition, however, can be met by setting the
direction of pc2c1 equal to x′. Because of this second condition,
the results of the epipolar constraint can be pushed to zero



TABLE I
THIS TABLE DEMONSTRATES THE ACCURACY IMPROVEMENTS
ACHIEVED BY REMOVING THE sin TERM FROM THE EPIPOLAR

CONSTRAINT COMPUTATION. EACH ENTRY LISTS THE MEAN AND
STANDARD DEVIATION OF THE ERROR, IN METERS. NOTE THAT THE

AVERAGE pz ERROR HAS DECREASED FROM 758 TO 12 METERS,
DEMONSTRATING THE EFFECT OF REMOVING THE BIAS FROM THE

EPIPOLAR COMPUTATION.

px error py error pz error
With sin (µ, σ) (-607.0, 136.6) (2.83, 76.5) (757.5, 318.1)

sin removed (µ, σ) (23.1, 85.9) (-1.77, 16.0) (11.8, 9.71)

by setting ~pc2c1 to be as close to parallel to the set of Cc2
c1x

vectors as possible. Therefore, the translation direction after
the UKF measurement update is biased toward the center of
the feature points that have been tracked in the second image.

To overcome this biasing of the translation direction, we
propose modifying the measurement step of the UKF to
eliminate the sin(θ~pc2

c1→Cc2
c1x

) term from the measurement. To
eliminate the effect of sin(θ~pc2

c1→Cc2
c1x

), the term [~pc2c1]×Cc2
c1x

is first computed and then normalized to be of length one.
The inner product of this term with x′ is then taken and
returned as the predicted measurement.

To determine the results of this modification, we simulated
a 16 second flight of an MAV traveling 200 meters in a
straight line. (More details on our simulation environment can
be found in Section VII-B.) In Table I, we show the average
and standard deviation of the error in the final estimated
position of the MAV, both before and after the sin removal
modification. Note that before sin removal, the pz location
error mean is a large positive number. This is a result of the
bias inherent in the unmodified epipolar fusion environment.
After removing the sin as discussed above, the z error is
dramatically decreased.

Despite the fact that the pz error has been decreased
by removing the sin term from the epipolar constraint, the
px error is still quite significant. This error is an artifact
of vision-based techniques where there is always a scale
ambiguity in the direction of travel (in this case, along the x
axis). In the next subsection, we discuss how to reduce the
error present in the direction of travel of the MAV due to the
scale ambiguity.

2) Removing the scale ambiguity: To remove the large
amount of error present in the direction of travel of the
MAV, we propose integrating another sensor into the UKF
framework discussed above. On a fixed-wing MAV, a pitot
tube designed for measuring airspeed can be utilized to
measure the current velocity of the MAV. To integrate this
measurement in the UKF, we utilize the property discussed
in [66] that if measurements are uncorrelated, they can be
applied during separate measurement updates of the Kalman
Filter. Therefore, whenever the pitot tube is read (approxi-
mately 10Hz), the current magnitude of the velocity in the
state is computed as a predicted measurement, with the air
speed measured by the pitot tube used as a measurement to

TABLE II
THIS TABLE DEMONSTRATES THE ACCURACY IMPROVEMENTS

ACHIEVED BY FUSING THE PITOT TUBE MEASUREMENTS WITH VISION
AND IMU INFORMATION. NOTE THAT THE STANDARD DEVIATION OF

ERROR ON THE px TERM HAS DECREASED FROM 86 TO 2.

px error py error pz error
Without pitot tube (µ, σ) (23.1, 85.9) (-1.77, 16.0) (11.8, 9.71)

With pitot tube (µ, σ) (-0.47, 1.92) (-1.01, 11.2) (2.85, 1.08)

the UKF.
By applying this measurement at 10 Hz, significant gains

in accuracy were achieved. In Table II, we present the
results of this modification using the same simulation setup
as described for Table I. Note that both the mean and
standard deviation of error has decreased in all three location
parameters, demonstrating the importance of overcoming the
scale ambiguity in visual measurement.

3) Determining the optimal image sampling rate: Typi-
cally, when fusing information together, the more information
that is available, the more accurate the final result will be.
However, with epipolar based visual and inertial fusion, this
is not the case. In this subsection, we show that it best to
sample the imaging sensors at the minimal sampling rate
allowed. We also discuss what limits the minimal possible
sampling rate.

In Figure 11, we show plots of the mean squared error
(MSE) in the estimated final location of the MAV for different
image sampling rates. The MSE represents the error in
estimated location after a 15 second, straight-line flight. Note
that the lowest MSE point does not lie at the maximal
sampling rate. This can be explained by noting that fusing
with the epipolar constraint helps to reduce the amount of
error present between two navigation state estimates (i.e.,
relative error). The total error at the end of flight is going to
be the summation of all the relative estimation errors during
the flight. Therefore, if the same relative error is achieved
by each measurement of the epipolar constraint, but fewer
measurements occur, the total error will be reduced. This
leads to the counter-intuitive fact that the minimal, as opposed
to maximal sampling rate, is ideal for epipolar constraint-
based information fusion.

Despite the general rule that the minimal sampling rate is
ideal, there are secondary considerations that must be taken
into account when deciding on a sampling rate. Note that in
Figure 11, the MSE is not monotonically decreasing as the
sampling rate decreases. There are two principal causes for
the increase in MSE at lower sampling rates.

First, the time update of the IMU introduces error into
the estimated navigation states, which the UKF attempts to
correct using the epipolar constraint. This correction applied
by the UKF is a linear correction. As the distance between the
estimated and measured navigation states increase however,
the linear assumption becomes invalid. Therefore, if too much
noise has been added by the IMU, it will not be possible for
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the linear update from the epipolar constraint to correct the
IMU-introduced noise. This is demonstrated by the “straight-
line” and “straight-line, half-noise” plots in Figure 11. The
only difference between the simulation setup of the different
plots is that the IMU noise was halved for the “straight-line,
half noise” plot. Note that as the IMU noise is decreased, the
“optimal” sampling rate becomes lower (moving from 1 Hz
to .67Hz), demonstrating that there is a limit placed on the
minimal sampling rate by the noise present in the IMU.

Second, the minimal sampling rate is limited by how long
the camera can track features in the image. To demonstrate
this fact, a simulation was run where, rather than tracking a
set of objects throughout the entire flight, as in the “straight-
line” simulations of Figure 11, a fixed camera was used so
that objects would leave the field of view more quickly. This
is the “straight-line, fixed-camera” plot in Figure 11. Note
that the sampling rate with the minimal MSE is higher (2Hz)
for this plot than the “straight-line” plot (1Hz) where the
same world points are observed throughout the MAV flight.
Therefore, when applying epipolar constraint-based fusion, it
is best to apply the minimal sampling rate that is allowed by
(1) the noise present in the IMU and (2) the persistence of
features across the images.

C. Estimating inertial sensor biases

Using the modifications proposed in the prior section, it is
possible to overcome a significant amount of error introduced
by inertial sensors when navigating an MAV. In this section,
we discuss how fusion based on the epipolar constraint can
be used to estimate biases of the inertial sensors, thereby
reducing the noise from those sensors.

Typical low-cost inertial sensors will have several different
types of noise [67], [68]. The Kalman Filter setup described
in Section IV-A essentially assumes that all noise from the

inertial sensors is uncorrelated over time. While the existence
of correlated noise (bias for the remainder of this section) in
the inertial sensors can be overcome by simply increasing
the uncorrelated noise covariance estimates, it is preferable
to estimate and remove the bias, thereby reducing the amount
of noise present in the inertial sensor measurements.

Before describing our method for estimating the bias of the
inertial sensors, it is important to demonstrate the feasibility
of estimating biases despite the fact that epipolar constraint
measurements yield only relative navigation information. In
this section, we first demonstrate that it is possible to esti-
mate biases using relative navigation measurements. We then
describe our modifications to the Kalman filter framework
described in Section IV-A to enable estimation of the inertial
sensor biases.

1) Proof of ability to estimate biases: To prove the fea-
sibility of estimating inertial sensor biases, we will perform
an observability analysis of a simplified system with a setup
that is very similar to our complete MAV navigation system.
Our simplified system consists of a state vector with two
locations, lt and lt−1. Similar to the situation where the
accelerometers are used to update the current velocity esti-
mates, we use an external rate measurement (ˆ̇lt) to update the
current locations. To estimate the bias on this measurement,
we modify the state vector to include the bias, obtaining a
state vector of:

~xt = [lt lt−1 b]T , (51)

where b is the bias of the sensor.
The time update for this state over time ∆t is

~xt+1 = F~xt + Gˆ̇
lt (52)

where

G = [∆t 0 0] (53)

and

F =

 0 1 −∆t
0 1 0
0 0 1

 . (54)

If the measurement of the system provides relative mea-
surements (like vision does for MAV motion), then the
observation matrix is:

H = [1 − 1 0]. (55)

With this simplified system, we can analyze the observabil-
ity of b for this Kalman Filter setup. To prove observability,
the rank and null vectors of the matrix

O =


H

HF
HFF
· · ·

 (56)



must be found. Substituting in for H and F in the first three
rows of O, we obtain:

O =

 1 −1 0
0 0 −∆t
0 0 −∆t

 (57)

By inspection, we find that this system can observe two
modes of the system, namely [1 − 1 0] and [0 0 1].
Because of the second mode, we conclude that biases are
observable when relative measurements of the state are used
in a Kalman Filter framework.

2) Filter setup for inertial bias estimation: Knowing that
biases are observable when relative navigation measurements
are used, we can modify the fusion framework developed in
Sections IV-A and IV-B to estimate biases. First, we modify
the state vector to include biases for all sensors, yielding

~X = [χt, χt−1, bax, bay, baz, bgx, bgy, bgz]
T
, (58)

where bnm is the bias estimate with the n subscript denoting
a for accelerometer and g for gyro, and the m subscript
denoting which axis the sensor is measuring (x, y, or z).
The A matrix described in Equation (86) is modified to

A =

 I10×10 0 0
I10×10 0 0

0 0 I6×6

 , (59)

to maintain bias estimates between measurements from the
visual sensor. The time update that utilizes the inertial sensors
to update the first 10 elements of the state is modified to
subtract out the bias estimate from the inertial measurements.
The measurement step for the filter remains unchanged. In
the following section, we present results demonstrating the
improved navigation performance obtained from estimating
the biases of the inertial sensors.

D. Results

To demonstrate the results of fusing visual, air pressure,
and inertial sensors together as proposed in this section,
we developed a detailed simulator that generated synthetic
MAV flights, together with uncorrupted and corrupted sensor
measurements for that flight. In the subsections that follow,
we first describe the simulation environment in more detail,
followed by results demonstrating the efficacy of the fusion
system proposed in this section.

1) Simulation Environment: To enable an evaluation of
our epipolar constraint-based fusion environment, we first
need to generate the true navigation states of the MAV over
time. To generate true location data about the MAV, a Bézier
curve representing the true path of the MAV was created.
A Bézier curve was chosen due to its inherent flexibility in
representing many different types of curves in 3-D space.
In addition, Bézier curves are a polynomial function of a
single scalar t, yielding two significant advantages. First, the
location at any time can be easily determined. Second, by
differentiating the polynomial with respect to t, the velocity

and acceleration at any point on the curve can be computed in
closed form. All quantities are assumed to be in a “navigation
frame” which has North as its x axis, East as its y axis,
and straight down as the z axis. The origin of this frame
was arbitrarily chosen as a location on the ground in Utah,
near Brigham Young University (close to our MAV flight test
area).

In addition to generating the location, velocity, and accel-
eration of the MAV, we also need to generate the angular
orientation (attitude) of the MAV camera. We have used
two basic approaches to generating the attitude of the MAV
camera. First, for a “fixed” camera, the angular orientation is
always constant within the MAV body frame. Second, we set
the attitude of the camera such that a specified world location
will always be in the center of the image, representing a
gimbaled camera that remains pointed at a specific location.
We utilize the second approach for the results presented in
this section.

Once the true location and attitude of the camera are
known, the inputs to the fusion algorithm are generated.
We assume the inputs from the IMU consist of 3-axis
accelerometer and gyroscope (gyro) readings. To generate
accelerometer readings, the acceleration of the camera is
computed from the Bézier curve. The effects of gravity,
Coriolis, and the rotation of the earth are then added to the
accelerometer readings as described in [69], yielding noise-
free accelerometer readings. To generate gyro readings, the
attitude at two locations on the Bézier curve is computed.
The locations on the curve are separated by the gyro sample
time. The difference in attitude is then used to compute the
angular rates of the camera, yielding noise-free gyro readings.
Noise-free pitot tube readings are computed as the magnitude
of the velocity at a point on the Bézier curve.

Once the noise-free readings have been computed, two
types of noise are added to the sensor readings. First,
Gaussian, zero-mean white noise is added to the computed
readings. The variance of the noise values were chosen
to approximate measurement errors observed on a Kestrel
autopilot [3]. Second, a constant bias is added to the gyro
and accelerometer readings. For each run of the simulator,
biases were randomly selected from a Gaussian distribution
with twice the standard deviation of the white noise for that
sensor.

To simulate inputs from the camera, a set of random world
points to be imaged are created. Using the locations of the
world points and the location and attitude of the MAV over
time, a set of feature locations corresponding with time along
its flight path are created. Features locations for a specific
MAV location and attitude are computed using the formula

λ

 xi
yi
1

 = KCc
n( ~Xn − ~pn), (60)

where ~Xn was the location of the world point (in the navi-
gation frame), ~pn is the position of the camera in navigation



frame coordinates (determined from its point on the Bézier
curve), Cc

n is the direction cosine matrix from the navigation
frame to the camera frame (also a function of location on
the Bézier curve), K is the calibration matrix of the camera,
mapping from Euclidean to pixel locations, λ is a scale factor
used for normalizing the third element of the image frame
vector to 1, and xi and yi are the image coordinates of the
point.

After determining the location of the object in the image
space, Gaussian white zero-mean noise is added to the image
location. We set the standard deviation of the noise equal to a
single pixel in the image plane. After adding noise, the pixel
values are then “de-calibrated” (multiplied by K−1) to obtain
vectors in the same Euclidean space as the MAV navigation
state.

2) Fusion Results: To test the efficacy of our proposed
fusion environment, we use two different “flight scenarios.”
In the first scenario, the MAV moves in a straight line starting
at 100 meters above the ground and 100 meters south of the
navigation frame origin. The camera then moves in a straight
line to 100 meters north of the navigation frame origin,
holding a constant altitude. In the East-West (y) direction, the
MAV is always at 0. Along this path, 161 images were cap-
tured at a rate of 10Hz, requiring 16 seconds to fly this path.
These values were chosen to achieve an airspeed (12.5 m/s)
typical of MAVs. In addition, 1601 samples of the gyro and
accelerometer readings were collected. Note that while this
flight scenario may seem like an overly simplistic maneuver
(flying in a straight line), it was chosen because it actually
exacerbates one of the fundamental problem of vision, the
universal scale ambiguity. Therefore, this scenario is one
of the most difficult scenarios for vision-aided navigation.
Results for this scenario are shown in Table III. Note that
this scenario was used for the partial results presented earlier
in this section.

The second scenario represents a more generic flight of an
MAV. It starts at -100 meters north, 100 meters in altitude.
It then flies an “S” pattern, going northeast before turning
to go northwest. While flying northwest, it passes directly
over the navigation frame origin, after which it turns back to
head northeast, arriving at -30 meters east, 100 meters north.
During the course of the flight, the altitude also drops from
100 meters to 60 meters. This entire flight takes 19 seconds.
We refer to this scenario as “The S Pattern”, with results
shown in Table IV.

In both scenarios described above, the world points being
observed were distributed using a three-dimensional Gaussian
distribution centered about the navigation frame origin. To
keep the objects in view, the camera is continuously rotated
to “look at” the origin.

To determine the overall accuracy of each fusion technique,
we ran each UKF filter setup with each flight path scenario
100 times. In Tables III, and IV, the mean and standard
deviation of the errors across 100 runs of the filter are shown.
The mean and standard deviation achieved using only the

IMU is also shown for each flight scenario as a reference.
The units for the final position error (px, py , and pz) are
in meters, while the final attitude errors are in degrees. The
attitude errors are the amount of yaw (ψ), pitch (θ) and roll
(φ) that would be required to move from the true location to
the estimated locations.

For each of these flight scenarios, five different setups
of our UKF environment were used. First, we ran epipolar
constraint-based fusion without any of the modifications
introduced in Section IV-B (Baseline). Second, we remove
the bias in the direction the camera is pointed as discussed
in Section IV-B1 (sin Removed). Third, the measurements
from the pitot tube are included in the UKF framework (Pitot
Added). Fourth, a slower sampling rate (2Hz, as opposed to
10Hz) is used in addition to all the other modifications (Min.
Sampling). Finally, the “Min. Sampling” filter is modified to
estimate the inertial sensor biases (Est. Bias).

As shown in these tables, each modification proposed
in this section significantly reduces the mean and standard
deviation of the error. By including all four proposed modi-
fications, more than an order of magnitude decrease in error
is achieved from both IMU-only navigation and the baseline
fusion approach. This demonstrates the necessity of including
the proposed modifications when considering epipolar con-
straint based fusion for navigation. It also demonstrates the
advantages of estimating the inertial sensor biases to help
reduce noise.

V. SIMULATION-BASED COMPARISON

In the prior three section, techniques for navigating using
inertial and visual sensor fusion have been introduced. In
Section II, a method that assumes GPS is available was
introduced, while Sections III and IV are more appropriate
for GPS-denied navigation. The two methods introduced in
Sections III and IV, however, are both based on frame-to-
frame measurements of image features. This approach has
significant advantages in terms of computational feasibility,
utilizing existing methods for outlier rejection, and minimiz-
ing the long-term effects of non-linearities on the underlying
estimation routine.

Despite the advantages of two-frame methods, significant
research work has also been performed where the location
and attitude of the camera and the location of objects
observed by the camera are estimated simultaneously, leading
to the Simultaneous Localization And Mapping (SLAM)
problem. In this section, we seek to improve our under-
standing of the benefits incurred from the increased cost in
complexity for SLAM-based methods compared to frame-to-
frame (constraint-based) methods. Note that there has been
a significant amount of work describing the theoretical and
practical limitations of SLAM-based algorithms [76], [77],
[78]. As far as we know, however, this is the first work
which directly compares these two fundamentally distinct
approaches to visual/IMU sensor fusion.



TABLE III
MEAN AND STANDARD DEVIATION OF ERROR IN THE FINAL ESTIMATED LOCATION AND ATTITUDE OF THE MAV WHEN FLYING A STRAIGHT-LINE

PATH WITH A GIMBALED CAMERA. NOTE THAT THE ERRORS IN ATTITUDE ARE ALL UNDER ONE DEGREE WHEN ALL FOUR MODIFICATIONS PROPOSED
IN THIS SECTION ARE IMPLEMENTED.

IMU only Baseline sin Removed Pitot Added Min. Sampling Est. Bias
px Error (µ,σ) (-4.48, 115.4) (-607.0, 136.6) (23.1, 85.9) (-0.47, 1.92) (-0.39, 1.19) (0.03, 1.13)
py Error (µ,σ) (8.27, 95.3) (2.83, 76.5) (-1.77, 16.0) (-1.01, 11.2) (-0.24, 3.05) (-.08, 1.96)
pz Error (µ,σ) (15.1, 12.7) (757.5, 318.1) (11.8, 9.71) (2.85, 1.08) (11.1, 1.17) (2.19, 0.82)
ψ Error (µ,σ) (-0.69, 14.0) (2.26, 17.1) (0.20, 2.52) (0.21, 2.71) (0.09, 1.07) (0.02, 0.58)
θ Error (µ,σ) (0.16, 15.93) (-143.5, 61.3) (1.57, 6.59) (-0.31, 1.70) (1.23, 1.78) (0.27, 0.61)
φ Error (µ,σ) (-1.05, 12.9) (2.90, 18.1) (0.65, 5.67) (0.26, 4.13) (0.08, 1.13) (0.02, 0.72)

TABLE IV
MEAN AND STANDARD DEVIATION OF ERROR IN THE FINAL ESTIMATED LOCATION AND ATTITUDE OF THE MAV WHEN FLYING THE “S-CURVE” PATH

WITH A GIMBALED CAMERA.

IMU only Baseline sin Removed Pitot Added Min. Sampling Est. Bias
px Error (µ,σ) (0.26, 110.4) (-128.6, 130.9) (-22.8, 88.1) (-1.89, 23.1) (0.79, 2.39) (0.08, 1.73)
py Error (µ,σ) (-15.4, 132.4) (78.0, 354.0) (-11.4, 92.7) (0.91, 11.8) (6.20, 2.75) (2.09, 1.82)
pz Error (µ,σ) (18.8, 33.6) (528.3, 278.9) (41.4, 102.0) (-2.90, 4.04) (5.18, 2.79) (-1.58, 1.36)
ψ Error (µ,σ) (0.91, 14.5) (39.3, 31.4) (5.01, 19.4) (0.38, 3.20) (-0.23, 2.67) (0.26, 1.40)
θ Error (µ,σ) (-0.07, 11.5) (-27.1, 26.9) (-3.84, 23.0) (-1.18, 4.91) (0.78, 1.87) (-0.41, 0.99)
φ Error (µ,σ) (2.32, 13.2) (-55.7, 47.9) (-1.40, 25.6) (1.85, 5.59) (0.71, 1.28) (0.65, 0.73)

While a significant amount of research has been published
in both SLAM-based and constraint-based IMU/vision fusion
(including works demonstrating their efficacy with real video
and IMU information), there are some significant difficulties
in comparing these results. Some of the difficulties in com-
paring results include:

• How to identify a feature across multiple images (the
correspondence or data association problem) differs
greatly from implementation to implementation. The
results of any algorithm are greatly dependent on how
well features are associated over time, making direct
comparison of published results difficult.

• Several different options exist for the “fusion engine”
used in these approached. Possible options include: (1)
the Extended Kalman Filter [79], (2) the Unscented
Kalman Filter [80], (3) the Information Filter [79], or (4)
the Particle Filter [81]. The exact methodology used to
implement each of these engines can also differ greatly
from published work to published work.

• The specific camera and IMU setup used to get final
results differs greatly between implementations.

• What noise is present in each of the sensors can vary
greatly from implementation to implementation, yield-
ing significantly different final results.

• When fusing data from multiple sensors, the methods
used to synchronize their timing and precisely align their
geometric orientations with respect to each other can
cause significantly different results to be reported from
the same basic fusion techniques.

Because of these and several other small differences in
implementations between published works, it is impossible
to perform a direct comparison between previously published

fusion techniques.
To perform a direct comparison between fusion techniques,

we assumed three basic similarities between the environments
for the techniques : (1) perfect data association across images,
(2) an Unscented Kalman Filter (UKF) framework [80] is
used as the basic filtering technique in both approaches
and (3) the same noise is injected into the system with
both scenarios. With these ambiguities removed from the
environment, we perform a comparison between navigation
approaches, rather than navigation implementations.

The remainder of this section is organized as follows.
Section V-A briefly reviews the constraint-based approach
that we implemented, with a discussion of the novel modifi-
cations made to the algorithm to enable a fair comparison to
SLAM techniques. Section VI-C describes our SLAM-based
approach to navigation for MAVs. Section V-C presents our
simulation-based comparison between different navigation
approaches.

A. Constraint-Based Fusion

The constraint-based method for fusing visual and IMU
data together is to use the “epipolar” constraint between two
images. The approach used in this section is the same basic
approach introduced in Section IV-A. In addition, we used the
modification proposed in Section IV-B1 to overcome the bias
towards the center of the image. The remaining modifications
in Section IV-B, however, were not utilized as they would
not enable a fair comparison between constraint-based tech-
niques and SLAM-based techniques. Because we could not
assume an external air-speed sensor, another technique had
to be utilized to overcome the unobservability of translation
magnitude in constraint-based techniques.



Unfortunately, this unobservability of velocity magnitude
leads to a positive bias in velocity magnitude, in the true
direction of velocity. To understand this effect, consider Fig-
ure 12 where a two-dimensional example of how the Kalman
filter will merge together translation directions is shown. Due
to the scale ambiguity, the measurement step can only correct
the direction of translation, not the magnitude. However,
when a derivative is taken of the translation direction, it
forms a tangent plane that will always lead to an increased
magnitude of the resulting vector. Because the increase in
translation leads to an increase in velocity, and the IMU only
measures accelerations, these increases lead to an exponential
increase in error in the true direction of travel.
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Fig. 12. A simple example of why the translation magnitude is biased
in the direction of true translation when performing 2-frame fusion. The
measurement step of the Kalman Filter combines the prior estimated
direction with the measured direction. However, the derivative of measured
angle difference is a tangent plane, leading to increased magnitude in the
true direction.

To overcome this weakness in the epipolar constraint
fusion method, we used a Kalman-filter type update on
the magnitude of velocity after each measurement step. To
determine the “update” that should be applied, a discussion
of what errors in the velocity may occur is required. Errors
in velocity can be broken into two components, errors in
the direction of the true velocity, and errors in orthogonal
directions (see Figure 12(c)). After the measurement step of
the UKF is completed, we assume that the direction of the
translation is correct. Therefore, we would like to set the
magnitude of the post-measurement translation equal to the
magnitude of the pre-measurement magnitude in the direction
of the post-measurement translation.

A simplistic approach to modifying the velocity would
be to simply change the velocity after each measurement
step (v+) to the velocity magnitude that was present before
the measurement step (v−). However, simply changing the
velocity magnitude will not reverse errors introduced in
the accelerometer bias estimates due to coupling between
the velocity estimate and the biases. Therefore, a “virtual
measurement” is used to correct the change in velocity
magnitude and its effects on IMU bias estimates. This virtual

measurement, ∆v, is found as:

∆v = (k − 1) ∗ v+, where (61)

k =
v−T v+

v+T v+
, (62)

which sets the magnitude of v+ equal to the magnitude of v−

projected in the direction of v+. This virtual measurement is
used as a quasi-Kalman measurement update as:

~X+ = ~X− +K∆v where (63)
K = PHT (HPHT )−1,

H = [0 I3 0].

Note that the covariance matrix is not modified in this step
as no real measurement has occurred. Using this method, the
measurement step of the Kalman filter does not significantly
alter the velocity magnitude nor the accelerometer biases in
the velocity direction.

B. SLAM-based Fusion

The second type of fusion technique that we evaluated was
based on previous Simultaneous Localization and Mapping
(SLAM) work. The general concept of SLAM is that a set of
world points should be observed (mapped) and localized over
time while simultaneously determining the current location
of the sensor (localization). By maintaining a full covariance
matrix between the location of the sensor and the location of
the world points, the SLAM algorithm has been shown to be
convergent in specific circumstances [83]. Therefore, SLAM
has been an area of intensive research for the past several
years. Most SLAM methods, however, have concentrated on
utilizing sonar or laser-based sensor for measurements of
the world, as opposed to a camera. The subset of SLAM
work that has focused on using a camera is generally called
bearing-only or visual SLAM. In general, however, these
methods have assumed that a camera is the only input, and
have not attempted to fuse in IMU data while performing
SLAM (although there have been exceptions: [84], [60]).

For our implementation of SLAM, a UKF was once again
used, helping make the comparison between SLAM-based
and constraint-based techniques equitable. The state of our
UKF includes the current navigation state of the camera
(p, q, v), the biases of the IMU (b), followed by entries
for the world points that are being tracked. One of the
primary difficulties with visual SLAM is the initialization
of new features. Because only the bearing of a world object
from the camera is observed the first time, the 3-D location
of the world point cannot be added directly to UKF state
for two reasons. First, there is essentially infinite variance
in one direction if only one observation has occurred (see
Figure 18). Second, because there may be error in the
observed bearing, the variance in the directions orthogonal
to the infinite variance direction grow with distance from the
camera, causing the initial observation of the point to have
an extremely non-linear variance.
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Fig. 13. A simple figure demonstrating the extremely non-linear variance
results from a single camera observation of a point. First, there is infinite
variance in the direction of the observation. Second, as the distance from
the camera increases, the variance in orthogonal directions also increase

Several attempts to overcome this initialization problem
have been utilized previously. In [73], a stereo camera system
was used, which eliminates the infinite variance problem for
world features that are “close enough” to the stereo camera
pair. Because the small size of MAVs severely limits the
baseline that can be placed between stereo cameras, however,
this many not be a feasible option. Therefore, [59] initialized
world features observed from an aircraft by assuming points
were on the ground and intersecting the ray from the camera
with a model of the ground elevation. However, with an MAV
that may be used to fly through urban terrain, the assumption
of points on the ground may not be valid. In [25], targets of
known size were placed on the ground, and the size of the
target was used to initialize the depth of the target from the
camera. This method is not applicable to our work as we
assume world points that are not known a-priori.

To provide an initialization methodology that can be used
with a single camera, and does not pre-suppose information
about the target, we use the method introduced in [85] to
initialize feature locations. This method, the “inverse depth”
method, places three new items in the Kalman Filter state for
each new object that is observed, namely: (1) the projective
center of the camera when the feature was first observed
(represented by Pc), (2) the direction of the ray (in 3-space)
of the first observation (represented by two angles, θ and
φ), and (3) the inverse depth of the point along that line
(represented by ξ). The inverse depth, rather than the depth,
is used because a finite value between 0 and 1 covers the
entire depth from 1 to infinity in a linear fashion. Therefore,
a variance of .5 on the inverse depth is equivalent to an
infinite variance when using depth. In addition, because the
bearing of the original observation is included in the Kalman
Filter state, the “increasing variance with distance” problem
discussed above is properly represented in the Kalman Filter.

While the inverse depth methodology has many advan-
tages, it has a significant failing when it comes to MAV
video. In [85], the direction of the ray that first observed the
point to be localized is represented by two angles, θ and φ.
This works very well for the situation outlined in [85], where
the camera is generally facing forward. However, in an MAV
where the camera may be facing down, this representation has
a significant shortcoming. Assume two rays, both pointing
almost straight down, but with one facing slightly forward
and one slightly to the side. Using the two angles φ and θ
to represent these locations, the rays will be very far apart
(i.e., φ = 90◦, θ = 0◦ and θ = 90◦) Therefore, there

is a singularity in the two angle representation around the
downward direction. To remove this singularity, we replaced
the two-angle representation with a 3-vector (r) that is
normalized to 1. To keep the vector normalized during the
measurement step, we used the approach outlined in [82].

With the state vector described, we can now describe
in detail the time and measurement updates utilized in our
SLAM-based fusion technique. During the time update, only
the current navigation state estimate of the camera needs to
be updated. The updates occur according to the accelerometer
and gyro measurements from the IMU. During the measure-
ment step of the UKF, the location of each world point that is
currently being observed in the image is used. The predicted
measurement for each world location is

~x = λCc
n(~Pnc +

1
ξ
~r − ~pnc ), (64)

where Cc
n, ~P

n
c , ξ, ~r, and ~pnc are all derived from the current

state estimate.

C. Comparison of Methods

To compare the constraint and SLAM-based imaging and
inertial fusion systems, we created a simulation environment
that simulates both an IMU and camera for use in the imag-
ing/inertial fusion algorithms. This simulator is described in
the following sub-section. The results obtained from adding
noise and using each fusion method are described in the
subsection V-C2. A discussion of these results concludes this
section.

1) Simulation Environment: To generate true navigation
states of the MAV over time, a Bézier curve representing the
true path of the MAV was created. A Bézier curve was chosen
due to its inherent flexibility in representing many different
types of curves in 3-D space. In addition, Bézier curves
are a polynomial function of a single scalar t, yielding two
significant advantages. First, the location at any time can be
easily determined. Second, by differentiating the polynomial
with respect to t, the velocity and acceleration at any point on
the curve can be computed in closed form. All quantities are
assumed to be in a “navigation frame” which has North as its
x axis, East as its y axis, and straight down as the z axis. The
origin of this frame was arbitrarily chosen as a location on
the ground in Utah, near Brigham Young University (close
to our MAV flight test area).

In addition to generating the location, velocity, and accel-
eration of the MAV, we also need to generate the angular
orientation (attitude) of the MAV camera. We have used
two basic approaches to generating the attitude of the MAV
camera: (1) for a “fixed” camera, the angular orientation
is always constant within the MAV body frame; (2) for a
“gimballed” camera, the attitude of the camera is set so that
the origin of the navigation frame would be imaged in the
center of the image.

Once the true location and attitude of the camera are
known, the inputs to the fusion algorithm are generated.



We assume the inputs from the IMU consist of 3-axis
accelerometer and gyroscope (gyro) readings. To generate
accelerometer readings, the acceleration of the camera is
computed from the Bézier curve. The effects of gravity,
Coriolis, and the rotation of the earth are then added to the
accelerometer readings as described in [69], yielding noise-
free accelerometer readings. To generate gyro readings, the
attitude at two locations on the Bézier curve is computed. The
locations on the curve are separated by the gyro sample time.
The difference in attitude is then used to compute the angular
rates of the camera, yielding noise-free gyro readings.

Once the noise-free readings have been computed, two
types of noise are added to the sensor readings. First,
Gaussian, zero-mean white noise is added to the computed
readings. The variance of the noise values were chosen
to approximate measurement errors observed on a Kestrel
autopilot [3]. Second, a constant bias is added to the gyro
and accelerometer readings. For each run of the simulator,
biases were randomly selected from a Gaussian distribution
with 10x the standard deviation of the white noise for that
sensor.

To simulate inputs from the camera, a set of random world
points to be imaged are created. These points are randomly
distributed both in x-y location and about the zero altitude
plane (i.e., the points are non-planar.) Using the locations of
the world points and the location and attitude of the MAV
over time, a set of feature locations corresponding with time
along its flight path are created. Features locations for a
specific MAV location and attitude are computed using the
formula

λ

 xi
yi
1

 = KCc
n( ~Xn − ~pn), (65)

where ~Xn was the location of the world point (in the navi-
gation frame), ~pn is the position of the camera in navigation
frame coordinates (determined from its point on the Bézier
curve), Cc

n is the direction cosine matrix from the navigation
frame to the camera frame (also a function of location on
the Bézier curve), K is the calibration matrix of the camera,
mapping from Euclidean to pixel locations, λ is a scale factor
used for normalizing the third element of the image frame
vector to 1, and xi and yi are the image coordinates of the
point.

After determining the location of the object in the image
space, Gaussian white zero-mean noise is added to the image
location. We set the standard deviation of the noise equal to a
single pixel in the image plane. After adding noise, the pixel
values are then “de-calibrated” (multiplied by K−1) to obtain
vectors in the same Euclidean space as the MAV navigation
state.

2) Setup and Results of Comparison: Using the general
setups described above for constraint-based and SLAM-based
fusion of the IMU and visual information, we designed three
different “flight scenarios” to test the relative merits of each
fusion approach. In the first scenario, the camera moves in a

straight line starting at 100 meters above the ground, 100
meters south of the navigation frame origin. The camera
then moves in a straight line to 100 meters north of the
navigation frame origin, holding a constant altitude. In the
East-West (y) direction, the MAV is always at 0. Along this
path, 151 images were captured at a rate of 10Hz, requiring
15 seconds to fly this path. These values were chosen to
achieve an airspeed (13.3 m/s) typical of MAVs. In addition,
1501 samples of the gyro and accelerometer readings were
collected. Note that while this flight scenario may seem like
an overly simplistic maneuver (flying in a straight line),
it was chosen because it actually exacerbates one of the
fundamental problem of vision, the universal scale ambiguity.
Therefore, this scenario is one of the most difficult scenarios
for vision-aided navigation. We refer to this scenario as the
“Straight-line Flight” scenario. Results for this scenario, with
a gimballed camera, are shown in Figures 14 and 15.

To determine the overall accuracy of each technique, we
ran each UKF filter setup 100 times. In Figures 14, 15, 16,
and 17, we use the “boxplot” command in MATLAB to
display the median and spread of the errors present in the
final location and attitude estimate across the 100 runs. In
these plots, the line in the middle of the box represents the
median of the data, the box represents the middle 50% of
the data, and the crosses outside the lines represent outlier
points.

(Note that in Figure 14, it is apparent that both the con-
straint and SLAM-based fusion techniques achieve significant
improvements over IMU-only fusion. Similar results were
seen with all scenarios tested, so all other figures simply show
comparative results between fusion techniques, allowing a
more detailed display of results. Figure 15 is the same as
Figure 14 except that IMU results have been removed. )

The second scenario tested represents a more generic flight
of an MAV. It starts at -100 meters north, 100 meters in
altitude. It then flies an “S” pattern, going east before turning
back, passing directly over the navigation frame origin,
headed in a northwest direction, and eventually turning back
to arrive at -30 meters east, 100 meters north. During the
course of the flight, the altitude drops from 100 meters to 60
meters. This entire flight takes 18 seconds. We refer to this
scenario as “The S Pattern”, with results shown in Figure 16.

In both scenarios described above, the world points being
observed were distributed using a three-dimensional Gaussian
distribution centered about the navigation frame origin. To
keep the objects in view, the camera is continuously rotated
to be “looking at” the origin, with the “top” of the camera
facing in the direction of travel at the current point.

The final scenario used was to determine the response of
the different fusion techniques to having a feature in view
for only a short period of time. The flight pattern in this
case was the same as the “straight-line flight” described
above. However, rather than distributing the world points
about the navigation frame origin, and always pointing the
camera at the origin, 30 points were uniformly distributed



in the North-South direction from 150 meters north to 110
meters south. The camera was kept at a fixed attitude of 80
degrees down. In the East-West and down-up direction, the
points were distributed using a Gaussian distribution with a
standard deviation of 20 meters. This scenarios is referred to
as the “straight-line, fixed camera” scenario, and results are
shown in Figure 17.

For each of these flight scenarios, three different setups of
our UKF environment were used. The most basic comparison
of constraint-based and SLAM-based fusion entails running
two different UKFs, with the exact same IMU and feature
location inputs. We refer to this as the “Constraint1” and
“SLAM” setups. For the straight-line flight and S pattern, 10
world points were used.

In addition to comparing the constraint and SLAM-based
techniques using the exact same inputs, we also created
a case that represents one of the fundamental differences
between the two navigation approaches. One of the principal
shortcomings of SLAM-based techniques is that, due to the
inclusion of world points in the filter state, real-time SLAM
filters are intrinsically limited in the number of features
they can simultaneously localize. In addition, it is far more
difficult to reliably track features over a long time period as
required by SLAM as opposed to simply tracking features
from one frame to the next. Therefore, it is easier to reliably
track a large number of features using the constraint-based
technique then SLAM-based techniques. To represent this
effect, we also simulated a constraint-based fusion technique
(Constraint2) that tracks 4 times as many features as the first
two setups (i.e., 40 world points for the straight-line and S-
pattern results, and 120 world points for the straight-line,
fixed-camera results.)

To tune the UKF, we first set the process noise matrix, Q,
to exactly equal the sources of noise on the IMU. The Q
matrix was then increased to compensate for non-linearities
in the process model. The values of Q were increased until
the performance of the filter no longer increased, thereby
tuning the Q matrix for use in these simulations.

3) Discussion of Results: From the data presented in
Figures 14-17, we can draw several conclusions about the rel-
ative strengths and weaknesses of the constraint and SLAM-
based techniques implemented in this section for vision-
assisted navigation. First, let us consider the case when the
camera continuously tracks the same objects, whether flying a
straight line (Figure 15) or an S-pattern (Figure 16). In both
these cases, the average error in the final navigation state
estimates for SLAM-based techniques are at least an order
of magnitude better than either constraint-based technique.
From these results, we conclude that if the MAV is flying
in a pattern where the same general area is being observed
over time (i.e., in an orbit pattern, perimeter surveillance,
etc.), then SLAM-based navigation algorithms are required
for accurate navigation.

However, when the camera is fixed and the MAV cam-
era is not continuously observing the same world points

(Figure 17), we observe a different pattern in the results.
While the SLAM-based fusion technique is better than the
Constraint1 and Constraint2 cases in position estimation, the
Constraint2 and SLAM results are much more comparable.
Therefore, when an area is quickly being observed by an
MAV and will not be re-observed, then the constraint-based
techniques may be useful in MAV flights.

In addition to the observation of what type of flight
pattern favors SLAM-based techniques vs. constraint-based
techniques, our results also demonstrate some interesting
attributes of each fusion technique. Note that in both straight-
line flight scenarios (Figures 15 and 17), the standard devi-
ation of the SLAM-based technique for Tx is significantly
smaller than the constraint-based techniques. This demon-
strates the significance of the global scale ambiguity in
vision-based methods. With vision, there is always a scale
ambiguity, but the SLAM-based technique attempts to find
one scale ambiguity across the entire flight. Constraint-based
techniques, on the other hand, have a scale ambiguity at every
step of the fusion filter. Therefore, the standard deviation in
the direction of travel is much larger using constraint-based
techniques than SLAM-based techniques.

VI. ANALYTICAL COMPARISON

Several methods have been introduced in the navigation
literature to fuse camera and IMU information together.
Despite impressive individual results for each method, it is
difficult to generalize which techniques are most appropriate
and understand precisely why some methods achieve more
accurate navigation estimates than others. This is primarily
due to the differences between papers in the IMUs utilized,
the filter used, and numerous other implementation differ-
ences that make a direct, comparative study of pre-existing
literature difficult. While the previous section presented a
simulation-based comparison of different navigation algo-
rithms, in this section we propose an analytical tool, “drift-
order” characterization of navigation algorithms, that can
be used to compare different navigation algorithms. This
drift-order characterization is similar to the ”big O” notation
used to characterize the computational complexity ”order” of
general algorithms.

To characterize the order of an algorithm, the growth in
computation time is determined as the number of inputs to the
algorithm increases. As the number of inputs becomes large
enough, the terms causing the most rapid growth determine
the order of the algorithm. Similarly, we propose to evaluate
navigation algorithms by the error growth (drift) in their
results as time increases, concentrating on the terms with
the quickest growth over time. We term this “drift order”
notation and will use a “big D” (D) to represent drift order
results. With this drift characterization tool, we are able
to analytically analyze different camera and IMU fusion-
based navigation algorithms. Specifically, we focus on two
commonly used approaches to visual and inertial information
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Fig. 14. Comparative results between fusion techniques and IMU-only – the straight line flight

fusion: (1) methods utilizing the epipolar constraint (epipolar-
based techniques) and (2) methods solving the simultaneous
localization and mapping (SLAM) problem.

4) Related Work: Much of the methodology used in
this section to characterize the performance of a navigation
system was first introduced in [86]. [86] attempts to answer
the question of how quickly the navigation system for a
tractor with a radar will drift when GPS signals are lost.
This section extends the work in [86] in two primary ways:
(1) we use the methodology of [86] to analyze visual and
inertial fusion systems, as opposed to a radar-based system
and (2) we introduce a formal classification approach (the
big D notation) for allowing comparisons between navigation
approaches.

One of the techniques analyzed in this section is simultane-
ous localization and mapping (SLAM) based approaches for
fusing visual and inertial information together. Several works
have previously attempted to characterize the performance
of SLAM algorithms as time goes to infinity[77], [78].
However, each of these approaches assume that a fixed set of
features are observed by the SLAM-filter over time, limiting
the applicability of the analysis to robots that stay in a

small, local area. In this section, we extend that analysis to
include feature replacement over time, enabling the analysis
of SLAM-based navigation approaches over a much larger
area.

It should also be mentioned that there are numerous papers
that deal with navigating with an IMU only, using the
epipolar constraint for visual and inertial fusion, and using
SLAM to fuse inertial and visual information together. A
survey of these approaches is beyond the scope of this report,
though some references are included with the descriptions of
these algorithms in the remainder of this paper. The majority
of these paper introduce a novel modification to the basic
navigation approach and demonstrate improved results using
their method. Note, however, that the results presented in
each of these papers depend heavily on the noise models
used for the IMU, which IMU was used, which filtering
method was used to enable fusion, and numerous other imple-
mentation decisions. Therefore, it is not feasible to perform
direct comparisons between distinct navigation approaches
by simply comparing previously published papers. In this
section, we attempt to compare navigation approaches using
drift order analysis because the drift order is independent
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Fig. 15. Comparative results between fusion techniques – the straight line flight

of many implementation issues that differentiate previously
published navigation approaches.

The next three sub-sections present a drift order analysis
of three navigation approaches: IMU-only (Section VI-A),
epipolar-based fusion of visual and inertial data (Section
VI-B), and SLAM-based fusion (Section VI-C). In Section
VII-B, we present simulation results verifying the drift order
results presented in the prior sections.

A. Basic IMU-based Navigation System Performance

To analyze the performance of IMU-only navigation sys-
tems, we utilize a simple model of an object that can be com-
pletely measured by a single accelerometer and gyroscope.
The current navigation state of the object is

~x =


x
y
θ
V

 , (66)

where x and y represent the 2-D location of the object being
navigated, θ is the angular orientation of the object and
V is the magnitude of the current velocity. The system is

characterized by the following dynamic equations:

ẋ = V cos θ (67)
ẏ = V sin θ (68)
θ̇ = ω (69)
V̇ = a, (70)

where ω is angular velocity and a is acceleration of the
object. ω is measured using a gyroscope and a is measured
using an accelerometer. We assume that each IMU sensor has
two sources of noise: (1) white, zero-mean Gaussian noise
characterized by its variance σ2

w and (2) a constant bias b
which was chosen from a Gaussian distribution with variance
σ2
b . Therefore, we have

ω̂ = ω +N (0, σ2
w,g) + bg (71)

â = a+N (0, σ2
w,a) + ba, (72)

where N (0, σ2) denotes a white, Gaussian noise process with
variance σ2 and zero mean, the g and a subscripts denote
gyroscope and accelerometer-related quantities, respectively,
and ω̂ represents a measured estimate of ω. Similar notation
is used for â.
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Fig. 16. Comparative results between fusion techniques – the S-pattern

1) Integration of Single Sensor: The first step in analyzing
the performance of an IMU-based system is to determine how
the noise in the IMU sensors affects estimates which are an
integration of the IMU sensors. This includes θ̂, which is an
integration of ω̂, and V̂ which is an integration of â. For the
remainder of this section, we will concentrate on integrating
ω̂ to obtain θ̂, though identical results could be obtained by
solving for V̂ .

To simplify the analysis of integration effects, we use Euler
integration, leading to

θ̂ = Ts

k∑
i=1

ω̂

= Ts

k∑
i=1

ω +N (0, σ2
w,g) + bg (73)

= θ + Ts

k∑
i=1

N (0, σ2
w,g) + bg,

where Ts is the sampling time of the sensor and k is the
number of samples that have been measures so far, leading
to t = kTs. To characterize the effect of noise in θ̂, we

introduce the term θ̃ which denotes the error in θ̂. Note that
θ̃ = θ̂ − θ, leading to

θ̃ = Ts

k∑
i=1

N (0, σ2
w,g) + bg. (74)

To determine the mean squared error, we compute

MSE(θ̃) = T 2
sE

[
(
k∑
i=1

N (0, σ2
w,g) + bg)2

]

= T 2
sE

 k∑
i=1

k∑
j=1

(
Ni(0, σ2

w,g) + bg,i
)

(75)

(
Nj(0, σ2

w,g) + bg,j
)]
.

Using the properties that (1) the term N (0, σ2
w,g) is un-

correlated across i and j, (2) the bias and white noise are
uncorrelated with each other, and (3) the bias is a constant
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Fig. 17. Comparative results between fusion techniques – the straight line, fixed camera flight

across all i and j, we can rewrite Equation (75) as

MSE(θ̃) = T 2
sE

[
k∑
i=1

N 2(0, σ2
w,g)

]
+ T 2

sE

 k∑
i=1

k∑
j=1

b2g


= T 2

s kσ
2
w,g + T 2

s k
2b2g/2 (76)

= D(t2σ2
b,g) +D(tσ2

w,g).

This equation shows that the white noise causes the mean
squared error of the attitude estimate to increase at a rate
proportional to time (t = Tsk), while the bias noise causes
a squared increase in error over time. Note that the velocity
estimate (V̂ ) will have the same form of error variance, with
the subscripts g replaced with a.

2) Complete System Error: The navigation state of our
system is represented by an x and y location, the current
angle (θ), and the current velocity (V ). By integrating a
single sensor, the drift order of θ and V was evaluated in the
previous sub-section. The x and y location error, however,
requires another integration of collected data. Using similar
notation as before, the total error in position is

~̃p =
√

(x̂− x)2 + (ŷ − y)2. (77)

To find the mean squared error of this quantity, we first
rewrite x̂ and ŷ as a function of θ̂ and V̂ , as follows:

x̂ =
k∑
i=1

(Vi + Ṽi) cos(θi + θ̃i) (78)

ŷ =
k∑
i=1

(Vi + Ṽi) sin(θi + θ̃i) (79)

~̃p =
√

(x̂− x)2 + (ŷ − y)2. (80)

Squaring the ~̃p term and applying some trigonometry prop-
erties leads to

~̃p2 =
k∑
i=1

k∑
j=1

ViVj cos(θi − θj)(cos θ̃i − 1)(cos θ̃j − 1) +

ViVj cos(θi − θj) sin θ̃i sin θ̃j +
2ViVj(cos θ̃i − 1) sin θ̃j sin(θi − θj) +
2ViṼj(cos θ̃i − 1) cos(θi − θj − θ̃j) + (81)

2ViṼj sin θ̃i sin(θi − θj − θ̃j) +
ṼiṼj cos(θi − θj + θ̃i − θ̃j).

To simplify this expression, we assume θi = θj , leading



to

~̃p2 =
k∑
i=1

k∑
j=1

ViVj cos(θ̃i − θ̃j) + ViVj +

−ViVj cos θ̃i − ViVj cos θ̃j +
2ViṼj cos(θ̃i − θ̃j) +
−2ViṼj cos θ̃j +
ṼiṼj cos(θ̃i − θ̃j).

Taking the expected value and using the fact that all noises
are uncorrelated with each other leads to:

~̃p2 =
k∑
i=1

k∑
j=1

E[ViVj ]E[cos(θ̃i − θ̃j)] + E[ViVj ] +

−E[ViVj ]E[cos θ̃i]− E[ViVj ]E[cos θ̃j ] +
2E[ViṼj ]E[cos(θ̃i − θ̃j)] + (82)

−2E[ViṼj ]E[cos θ̃j ] +
E[ṼiṼj ]E[cos(θ̃i − θ̃j)].

This equation can be divided into 4 different terms, each of
which can be handled separately as follows:
• E[ViVj ] is the expected value of the true velocity values.

For mathematical simplicity, we assume that the velocity
is constant, so E[ViVj ] = V 2.

• E[ViṼj ] will become zero as there is assumed to be no
correlation between the true velocity values (Vi) and the
and the noise in velocity estimates (Ṽj).

• E[ṼiṼj ] is the cross-correlation between the errors at
different times i and j. Because these values are ob-
tained by integrating the accelerometer outputs, there
are two types of correlation. First, the correlated noise
due to integrated white noise will be of the form
N (0,min(i, j)σ2

w,a). The noise due to bias in the ac-
celerometer will be ijba.

• E
[
cos
(
N (0, σ2)

)]
appears repeatedly in Equation (82),

with the normal distribution changing depending on the
error term inside the cos. As discussed in Appendix A,
we can replace this expected value with the term e−σ

2/2.
Note that the value of σ2 will depend on which expected
value term in Equation (82) is being replaced.

Following these rules for replacing the expected values
leads to the equation

E[~̃p2] =
k∑
i=1

k∑
j=1

ViVje
−(T 2

s (i−j)2b2g+T 2
s (i−j)σ2

w,g)/2 + ViVj +

−ViVje−(T 2
s iσ

2
w,g+T 2

s i
2bg)/2 +

−ViVje−(T 2
s jσ

2
w,g+T 2

s j
2bg)/2 +

(min(i, j)σ2
w,a + ijba)e−σ

2
cross/2

σ2
cross = T 2

s (i− j)2b2g + T 2
s (i− j)σ2

w,g

Before we can formally derive the drift order for this
expression, more attention must be given to the exponential

terms. Note that each exponential term could be rewritten
in the form k1e

−k2(x−µ)2/2, where k1 and k2 are constants
that are greater than 0. Noting the similarity between this
expression and a typical Gaussian distribution, we assert
that the infinite sum of any of these exponential terms will
converge to a constant. Therefore, we can divide the equation
above into navigation order components as follows (replacing
each exponential with a constant):

k∑
i=1

k∑
j=1

ViVj = D(t2)

k∑
i=1

k∑
j=1

ViVjk1e
−k2(x−µ)2/2 = D(t)

k∑
i=1

k∑
j=1

min(i, j)σ2
w,ak1e

−k2(x−µ)2/2 = D(t2)

k∑
i=1

k∑
j=1

ijbak1e
−k2(x−µ)2/2 = D(t3) (83)

Therefore, the MSE of location increases in proportion to t3.
Of particular note in this derivation is the role that noise in
the angular estimate plays in the drift order of the system.
In the last line of Equation (83), the effects of angular error
are simply a constant which is ignored by the drift order
analysis. Therefore, white and bias errors in the gyroscope
do not affect the location drift order of this system.

B. Performance of epipolar-constraint based fusion

One of the methods previously introduced in the literature
to enable fusion between visual and inertial information is
based on the “epipolar” constraint[87], [63]. In this section,
we review how the epipolar constraint is used to enable fusion
of visual and inertial information, followed by a discussion
of how this method affects the drift order of the system.

1) Utilizing the epipolar constraint: The epipolar con-
straint can be utilized whenever a single fixed object is
observed by a camera at two locations (or two cameras at
different locations). Given that any three points in the world
form a plane, a single world point and the two camera
projection centers form a plane in the 3-D world – the
epipolar plane. Similarly, when a world point is observed in
two images, the two vectors representing where the point was
observed in the image plane (~x′ and ~x), and the translation
vector between the two camera locations, will all lie on the
epipolar plane.6 By assigning a unique coordinate frame to
each camera location, this constraint is represented by the
formula

~x′[~pc2c1]×Cc2
c1~x = 0, (84)

6Note that image locations are typically in pixels, while the discussion of
vectors so far assumes all vectors are in an unscaled, Euclidean space. In
this report, we assume that the camera has been calibrated a-priori and that
the conversion from image to Euclidean vectors has already occurred using
this calibration information.



where Cc2
c1 is the direction cosine matrix between the camera

coordinate frames and [~pc2c1]× is the position of camera 1
in the second camera’s coordinate frame, put into a skew-
symmetric matrix. (In other words, we calculate the cross
product between ~pc2c1 and Cc2

c1~x.) This constraint enforces that
the three vectors ~x′, Cc2

c1~x, and ~pc2c1 all lie within the same
plane in the 3-D world.

To utilize the epipolar constraint in a fusion environment,
we created a Kalman Filter-based framework. (Specifically,
we utilized the Unscented Kalman Filter (UKF) to apply the
Kalman filter to non-linear systems.) The state in the UKF
must contain enough information to generate both Cc2

c1 and
~pc2c1 during the measurement step. To represent general motion
by the robot between two different locations, the UKF state
~X = [χt, χt−1, b]T is used, where χt is the navigation state
estimate at time t, χt−1 is the navigation state estimate at the
previous time, and b is the estimated bias in the accelerometer
and gyroscope. The navigation state (χ) at each time contains
x, y, θ, V as described in the prior section on IMU-only
navigation. This method for setting up the UKF to enable
vision and inertial information fusion was first introduced
in [65].

Performing the time update
The time update for this UKF implementation takes two
different forms. The first form updates χt (the first 4 elements
of the current state) every time an IMU measurement occurs
using the same dynamic equations as the IMU-only estimator.
This makes the first 4 elements of the state the most recent
navigation state estimate. After each measurement update,
the state is also updated using the formula

~X+ = A ~X− where (85)

A =

 I 0 0
I 0 0
0 0 I

 , (86)

causing the current state to become ~X =

 χt
χt
b

. The first

4 elements of the state vector are then updated by IMU

measurements to realize a new current state X =

 χt+1

χt
b

.

With this technique, the two most recent χ estimates, cor-
responding to the time of the two most recently captured
images, are always stored as the current state, together with
the estimated biases for the gyroscopes and accelerometers.

Performing the measurement update
To utilize the epipolar constraint as a measurement in a
UKF framework, the “Dynamic Vision” approach introduced
in [63] is used. Assuming a feature has been detected in two
images, the locations of the features are represented by ~x′ and
~x. Because the epipolar constraint should always be equal
to zero, the “measurement” used by the UKF is a vector of
zeros in length equal to the number of corresponding features
found between the two images. The predicted measurement

is ~x′[~pc2c1]×Cc2
c1~x (from Equation (84)) for each set of features

~x′ and ~x, where ~pc2c1 and Cc2
c1 are functions of χt and χt−1.

2) Effect of epipolar-based fusion: We perform our anal-
ysis of the drift order in two portions. First, we analyze the
effect of epipolar-based fusion on the error in θ̂. Second, we
analyze the effect on the drift order of the location error.

Drift order of attitude error
To understand the impact of epipolar-based fusion on the drift
order of angular estimates, we analyze the measurement term
~x′[~pc2c1]×Cc2

c1~x. Note that the measurement includes informa-
tion about the attitude change between the two cameras (c1
and c2), but does not contain any information about the actual
attitude of the camera. Because the epipolar measurements
do not return a measurement of absolute attitude, and the
measurement of relative attitude is noisy, it cannot wholly
eliminate the drift in θ̂. However, it will reduce the drift
order of the θ error, as shown below.

Theorem 1: By obtaining relative measurements of attitude,
the bias of the gyroscope can be successfully estimated,
reducing the drift order of θ̂ to D(t) from D(t2).

Proof To prove that the bias of the gyroscope can be
properly estimated when using relative measurements, we
will use observability theory on a simplified system. The
system state is [xn, xo, b]T , where xn is the new state, xo
is the old state, and b is the estimate bias in a sensor that is
used to update xn. The time update for this equation is

~xt+1 = F~xt + Gu where

F =

 1 0 −∆t
0 1 0
0 0 1


G = [∆t 0 0]T ,

where u is a scalar input from a rate sensor. The measurement
equation is y = H~x where H = [1,−1, 0]T . The observabil-
ity matrix for this system is

O =

 H
HF

HFF


=

 1 −1 0
1 −1 −∆t
1 −1 −2∆t

 .
From inspection, the row-space spanning vectors for this
matrix include [1,−1, 0] and [0, 0, 1]. The second vector
proves that the biases are observable for a system in which
only relative differences over time are observed, showing that
the gyroscope bias will be estimated when using epipolar-
based fusion of inertial and visual data.

Because the biases are observable, this should decrease the
drift order on θ̂ from D(t2) to D(t).

Drift order of location error
To analyze the drift order on location error, we once again
consider the epipolar constraint ~x′[~pc2c1]×Cc2

c1~x = 0. Note that
because this equation is set equal to 0, no information about
the magnitude of relative position ~pc2c1 can be obtained from
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Fig. 18. A simple figure demonstrating the extremely non-linear variance
results from a single camera observation of a point. First, there is infinite
variance in the direction of the observation. Second, as the distance from
the camera increases, the variance in orthogonal directions also increase

epipolar measurements. Therefore, the epipolar constraint
will have no effect on the velocity estimate error. Because
of the property of drift order described at the end of Section
VI-A2, namely, that the location drift order is independent
of noise in the gyroscopes, the drift order on location is the
same when using an epipolar-based fusion and an IMU-only
navigation method.

C. Performance of SLAM-based fusion methods

To explore the performance of SLAM-based methods,
we first review the basics of SLAM-based algorithms. The
general concept of SLAM is that a set of world points
should be observed (mapped) and localized over time while
simultaneously determining the current location of the robot
(localization). By maintaining a full covariance matrix be-
tween the location of the sensor and the location of the world
points, the SLAM algorithm has been shown to be convergent
in specific circumstances [77]. Therefore, SLAM has been an
area of intensive research for the past several years.

The implementation of SLAM which we discuss in this
section is once again based on the Kalman Filter (UKF). The
state of our UKF includes the current navigation state of the
camera (x, y, θ, V ), the biases of the IMU (b), followed by
entries for the world points that are being tracked. One of
the primary difficulties with visual SLAM is the initialization
of new features. Because only the bearing of a world object
from the camera is observed the first time, the 3-D location
of the world point cannot be added directly to UKF state
for two reasons. First, there is essentially infinite variance
in one direction if only one observation has occurred (see
Figure 18). Second, because there may be error in the
observed bearing, the variance in the directions orthogonal
to the infinite variance direction grow with distance from the
camera, causing the initial observation of the point to have
an extremely non-linear variance.

To provide an initialization methodology that can be used
with a single camera and does not pre-suppose information
about the target, we use the method introduced in [85] to
initialize feature locations. This method, the “inverse depth”
method, places three new items in the UKF state for each new
object that is observed, namely: (1) the projective center of
the camera when the feature was first observed (represented
by Pc), (2) the direction of the ray (in 3-space) of the first
observation (represented by two angles, θ and φ), and (3) the
inverse depth of the point along that line (represented by ξ).

The inverse depth, rather than the depth, is used because a
finite value between 0 and 1 covers the entire depth from
1 to infinity in a linear fashion. Therefore, a variance of
.5 on the inverse depth is equivalent to an infinite variance
when using depth. In addition, because the bearing of the
original observation is included in the Kalman Filter state,
the “increasing variance with distance” problem discussed
above is properly represented in the Kalman Filter.

With the state vector described, we can now describe
in detail the time and measurement updates utilized in our
SLAM-based fusion technique. During the time update, only
the current navigation state estimate of the camera needs to
be updated. The updates occur according to the accelerometer
and gyro measurements from the IMU. During the measure-
ment step of the UKF, the location of each world point that is
currently being observed in the image is used. The predicted
measurement for each world location is

~x = λCc
n(~Pnc +

1
ξ
~r − ~pnc ), (87)

where Cc
n, ~P

n
c , ξ, ~r, and ~pnc are all derived from the current

state estimate. λ is a simple scaling factor which divides the
results of Cc

n(~Pnc + 1
ξ~r − ~p

n
c ) to make the third element of

~x = 1.
1) Drift order of SLAM-based systems: In prior work

[77], [78], several different evaluations of the performance of
SLAM-based algorithms have been performed. The primary
result of these works is that SLAM is convergent (i.e., the
drift rate goes to zero as t → ∞.) However, the analysis
showing convergence assumes that the robot observing fea-
tures is always observing the same set of features, limiting the
use of the robot to a small area. In this section, we present an
analysis to determine the effect of the inclusion and removal
of features at a constant rate (the feature replacement rate –
frr). This new analysis enables us to characterize navigation
performance when the robot is navigating over an extremely
large area.

To analyze SLAM algorithms with feature replacement,
we analyze the performance of SLAM in three separate
“stages”. First, we analyze SLAM when the old feature is
still being observed, but the new feature has not yet been
observed. Second, we analyze the case when a new feature
is being observed simultaneously with the old feature. Third,
the performance of SLAM with the new feature after the old
feature is no longer being observed is analyzed. To help guide
the explanation, we will use the simple setup shown in Figure
19 where the robot moves in a single line, the features are
also in a line, and the sensor measures the distance between
a feature and the robot. This leads to our first lemma, which
is:

Lemma 1: When a SLAM algorithm has converged, the
feature location is known with uncertainty σ2

f .
This lemma is a direct result of prior work on convergence.

The SLAM algorithm has converged when the feature loca-
tion errors are no longer increasing and are highly correlated
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Fig. 19. This figure shows a simple scenario that demonstrates the essential
characteristics in SLAM with feature replacement. The robot (the triangle)
observes the “old” feature first (f,o), later observes both features, and finally
observes only the “new” feature (f,n).

with the current robot position. This lemma leads to our first
theorem relating to SLAM-based fusion, which states:

Theorem 2: The uncertainty in the robot location when
consistently observing a single feature is bounded by σ2

f +
kσ2

m, where σ2
f is the variance of the feature, σ2

m is the
variance associated with the measurement itself, and k is a
constant such that 0 ≤ k ≤ 1.

Proof: From Lemma 1, we know that if the robot location
were completely unknown at a given point in time, its
covariance would decrease to σ2

f+σ2
m immediately following

a measurement of the feature. This forms the upper limit on
the covariance of robot location, proving k ≤ 1. In addition,
from lemma 1, the error in feature location is correlated with
the robot location, leading to the lower limit of σ2

f . k will
usually be somewhere between 0 and 1 because the robot
location is not entirely unknown before each measurement
occurs. Instead, it is a function of the previous uncertainty
and how quickly the location estimate drifts (σ2

d). Therefore,
at each measurement, the covariance due to measurement
will decrease, finally reaching an equilibrium point that is
dependent on the relative sizes of σ2

d and σ2
m. Therefore, the

final uncertainty in robot location will be σ2
f + kσ2

m, where
k depends on the relative magnitudes of σ2

d and σ2
m and is

bounded by 0 ≤ k ≤ 1.
Let us now transition to the second stage in feature

replacement: the case where a new feature is added to
the SLAM filter. We will assume that the old feature is
not immediately removed, but that the new feature and old
feature are simultaneously observed for some time period
we term the joint observation time (jot). To determine the
final drift order of the system, we must characterize what the
uncertainty of the new feature location will be. To determine
this new covariance, we introduce the notation σ2

f,o and σ2
f,n

for the covariance of the old and new features, respectively.
Theorem 3: The covariance on a new feature will be

bounded by σ2
f,o + (1+k)σ2

m

jot .
Proof: From theorem 2, we know that covariance of the

robot location is σ2
f,o + kσ2

m. Therefore, the covariance for
the new landmark after the first measurement is σf,o + (1 +
k)σ2

m. Because the σf,o term is present in every measurement
and correlated with both robot location and the old feature
location, it will not decrease with extra measurements of the
new feature. The (1 + k)σ2

m term, however, is not correlated
with robot location and will therefore be reduced by every
measurement of the new feature. Therefore, the covariance of

the new feature will be the summation of σ2
f,o and (1+k)σ2

m

divided by the number of observations of the new feature.
Assuming the number of observations of the new feature are
proportional to the time spent observing it (jot), we obtain
σ2
f,n = σ2

f,o + (1+k)σ2
m

jot . QED.
Finally, we must analyze what happens after the old feature

is no longer observed by the SLAM filter. This case is very
similar to that discussed in theorem 2 where a single feature is
being used to maintain the position of the robot. Substituting
in the noise on the new feature location with the expression
described in theorem 3, we can express the new robot location
variance as a function of the first feature’s variance. This
leads to σ2

l = kσ2
m + σ2

f,o + (1+k)σ2
m

jot . Note that with each
feature replacement, the final term will be added again to
the MSE of the robot location. Therefore, when running
SLAM with feature replacement, the navigation order is of
the form D(t), where the constant inside this expression will
be multiplied by frr

jot .

D. Results

In the preceding sections, we have analytically derived
the location drift order (in terms of mean square error) for
IMU-only navigation (D(t3)), epipolar-based fusion (also
D(t3)) and SLAM-based fusion (D(t)). To verify our results,
we created a Simulink-based environment consisting of (1)
a robot with an IMU, (2) world features, (3) a camera
model, and (4) three estimators of navigation state (IMU-
only, epipolar-based fusion, and SLAM-based fusion). The
robot was defined by the state equations

ẋ = V cos θ (88)
ẏ = V sin θ (89)
θ̇ = ω (90)
V̇ = a, (91)

with ω and a being inputs to the simulation environment.
The IMU was modeled by corrupting ω and a with white
noise and a bias. At the beginning of each simulation run, a
set of 51 features was uniformly distributed throughout the
simulated environment of 3000x3000 units. To determine the
altitude of each feature, a Gaussian distribution with standard
deviation of 200 was used. The camera was limited to observe
features within ±60o side to side and ±50o top to bottom.
The feature location (f ), when observed, was defined by the
equation  x

y
z

 = C(X − T )

f =
[
x/z
y/z

]
. (92)

The feature locations were then corrupted with white, Gaus-
sian noise. This simulates the use of a calibrated camera
without radial distortion in the real-world. Finally, the three
estimators described in the prior sections were implemented,
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Fig. 20. This plot shows the MSE of the angle estimates of three
different estimators. Both the epipolar and SLAM-based fusion techniques
significantly reduce the angular error.

each having the same IMU and feature inputs so that a direct
comparison between techniques is achieved.

In Figure 20, we present the MSE of each estimator on θ̂.
The plots represent the MSE across 10 runs of the simulator.
Each simulation consisted of the robot moving at a constant
velocity of 13 units/s and an angular rate of 0.05 rad/s. The
white and bias noise on the accelerometer was added as a
Gaussian distribution with standard deviation of .1 units/s2.
The gyroscope error was models with Gaussian distributions
with a standard deviation of 0.01 rad/s. Note in Figure 20
how the IMU-only curve shows drift in MSE at the rate of
t2, verifying our analysis of the IMU-only case in section
VI-A1. Both the epipolar and SLAM-based fusion techniques
dramatically decrease the error in the attitude estimate.

In Figure 21, the MSE of location error for the three
possible techniques are also shown. These plots are averaged
over the same 10 runs described for the errors in θ. Both
the IMU-only and epipolar-based fusion approaches grow
in error at the rate of t3, verifying the analytical results
presented above that state the epipolar-based and IMU-only
methods are of the same drift order. SLAM-based fusion, on
the other hand, is increasing at a (small) linear rate.

Figures 20 and 21 also verify the surprising result pre-
sented at the end of Section VI-A2: that errors in attitude do
not affect the location drift order of the system. Note in 20
the dramatic improvement in errors in theta for the epipolar-
based fusion approach. However, note in Figure 21 that the
drift order of location for the epipolar-based approach is
no different from the IMU-only approach. This empirically
verifies that the drift rate of attitude does not affect the drift
rate of location error.
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Fig. 21. This plot shows the MSE of the location estimates of the three
different estimators. While the epipolar-based constraint significantly lowers
the angular error (see Figure 20), its drift order is the same as IMU-only
estimates. SLAM-based techniques increase very slowly (linearly with time)
as predicted by our analysis.

VII. REDUCED-DRIFT NAVIGATION

Nomenclature

xi, yi Position of the ith MAV
V i Velocity of the ith MAV
Ψi Heading of the ith MAV
Φi Roll angle of the ith MAV
vix Velocity in X direction m/s
viy Velocity in Y direction m/s
aix Acceleration in X direction, m/s2

aiy Acceleration in Y direction, m/s2

g Acceleration due to gravity, m/s2

Rij Relative range between ith and jth MAV
φij Relative bearing angle between ith and jth MAV
β Side slip angle
biΦ gyro bias for roll rate
biΨ gyro bias for yaw rate

In the prior sections we have discussed methods for
improving the navigation of a single MAV. For the remained
of this report, we discuss techniques developed for multiple
MAV missions. Cooperative missions have been studied
extensively for reasons unrelated to navigation. For example,
some MAV missions may be quite dangerous, and it is
unlikely that a single agent would survive long enough
to complete the task. Similarly, some MAV models are
inexpensive but prone to failure, in which case it may be
more economically feasible to use a large number of cheap
MAVs rather than risk a single expensive one. Many tasks,
such as searching a particular area, can be completed more
quickly using multiple MAVs[92].



1) Related Work: Cooperative techniques in the past have
generally focused on creating basic group behaviors, includ-
ing: (1) remaining in the group (cohesion), (2) keeping a safe
distance between each other (dispersion), (3) alignment in the
direction of motion, (4) collision avoidance from obstacles
and moving MAVs [93], and (5) cooperative arrival[94], [95].
In most of these works, the MAVs all navigate individually,
followed by a step to ensure group behavior. In this section,
however, we show that MAVs can cooperatively navigate
by helping each other to determine position and heading
when GPS is not available. We have found that a cooperative
navigation strategy significantly constrains the IMU drift,
similar to the results of a hybrid IMU/GPS system.

In Kurazume and Hirose[96], [97], a method called ”Co-
operative Positioning System (CPS) is described. In this
system, a group of robots is divided into two groups, A
and B. One group, A, remains stationary and acts as a
landmark while group B moves. Group B then stops and
acts as a landmark for group A. This ”dance” is repeated
until the target position is reached. These kind of strategies,
however, cannot be applied to fixed-wing MAVs because they
require continuous motion to stay in the flight. In another
paper [98], the authors study the trade offs between different
classes of sensing strategy and motion control strategy in the
context of terrain mapping with multiple robots. However,
this work also assumes the ability of robots to stop, making
it inapplicable to fixed-wing MAVs.

In Merino et al.[99], a method for vision based MAV
motion estimation from multiple planar homographies has
been proposed. The authors describe the determination of
the relative displacement between different MAVs employing
techniques for blob feature extraction and matching. This
work, however, requires that the MAVs be capable of identy-
ing and tracking objects in the surrounding world, while our
work depends solely on the group of MAVs in use for the
mission.

In Roumeliotis and Bekey[100], a “collaborative localiza-
tion” scheme is proposed that enables robots with different
sensors and communication ranges to improve their pose
estimate when they are within communication range. While
similar, our work is different from Roumeliotis and Bekey
in two principle ways. First, Roumeliotis and Bekey assume
that the robots can use external landmarks to help navigate
the robots. We limit the navigation system inputs to IMU
measurements and relative information between the MAVs.
Second, we perform and observability analysis of our coop-
erative navigation system, yielding insight into the benefits
and limitations of cooperative navigation.

2) Contribution: In this section, a cooperative navigation
system (CNS) is outlined that allows an MAV within a
group to navigate without GPS or other wide-area posi-
tioning information. This method works on the principle of
exchanging IMU information within the group of MAVs. An
MAV collects the IMU measurements from other MAVs in
its sensor range and then fuses these measurements with the

range and bearing measurement of neighboring MAVs. This
fusion results in an estimate of the position and attitude state
for itself and other MAVs in its sensor range. Simulation
results demonstrate the ability to significantly limit drift in
the navigation states using this method. We also perform
an observability analysis to help define the strengths and
limitations of CNS.

In the next section we describe the full cooperative naviga-
tion model and perform an observability analysis. In section
VII-B, simulation results are presented that demonstrate the
efficacy of the CNS.

A. Cooperative Navigation System

To develop the CNS we use a simplified model where
the MAV is moving in level flight and the velocity of the
MAV is aligned with the wind frame of the MAV (β = 0).
We also assume that each MAV in the group is equipped
with a low cost IMU for its navigation, which consist of
two gyroscopes (gyros) and two accelerometers. The gyros
gives roll rate(Φ̇) and yaw rate. The two accelerometers
give acceleration ax and ay as output. Due to the low-cost
and low-weight restrictions of MAVs, the IMUs present on
the MAV are not sufficient to enable navigation by simply
integrating the gyro and accelerometer inputs. Therefore,
GPS is typically used. We assume, however, that none of the
MAVs have GPS. Instead, a sensor which detects the relative
range (R) and bearing (φ) of the other MAVs is present to
aid in navigation (see Figure 22). In addition, we assume that
MAVs have the communication capabilities through which
they can exchange the measured accelerometer and gyro data
with each other.

Once the IMU information from all MAVs has been
exchanged, and the relative location of other MAVs is mea-
sured, an Extended Kalman Filter (EKF) is used to fuse
together this information. In the following subsections, we
describe our dynamic model for the MAVs, followed by a
detailed description of the time and measurement update of
the EKF.

1) MAV Dynamic Model: To create an EKF for MAV po-
sition and attitude, we use a conventional dynamic model for
an MAV moving in level flight. The MAV uses two control
inputs, the first is commanded roll angle ΦC , responsible for
lateral acceleration and the second is required velocity VC .
Assuming these constraints, the equations of motion for the
ith MAV are given as:

ẋi = V i cos(Ψi) (93)
ẏi = V i sin(Ψi) (94)

Ψ̇i =
g

V i
tan(Φi) (95)

Φ̇i =
1
τ iΦ

(ΦiC − Φi) (96)

V̇ i =
1
τ iV

(V iC − V i) (97)
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Fig. 22. Estimation Model of MAVs

Where τ iΦ and τ iV are autopilot time constant for roll angle
and velocity respectively. Differentiating ẋi and ẏi with
respect to time we get.

ẍi = V̇ i cos(Ψ)− V sin(Ψ)Ψ̇i (98)
ÿi = V̇ i sin(Ψ) + V cos(Ψ)Ψ̇i (99)

Now substituting Ψ̇i = g
V i tan(Φi), we get.

ẍi = V̇ i cos(Ψ)− g sin(Ψi) tan(Φi) (100)
ÿi = V̇ i sin(Ψ) + g cos(Ψi) tan(Φi) (101)

Accelerometer outputs with noise in x and y directions are
given as

aix = ẍi − g sin(Ψi) tan(Φi) + ηiax (102)
aiy = ÿi + g cos(Ψi) tan(Φi) + ηiay (103)

Gyro output with bias and noise is given as

Ψ̇i
gyro = Ψ̇i + biΨ + ηiΦ (104)

Φ̇igyro = Φ̇i + biΦ + ηiΨ (105)

Range and bearing sensor on each MAV as shown in Figure
22, gives

Rij =
√

(xi − xj)2 + (yi − yj)2 (106)

φij = tan−1 yj − yi
xj − xi

−Ψi (107)

2) Navigation State Estimation: For navigation state esti-
mation we use an EKF. To implement the EKF, we assume
the following non-linear state space model.

Ẋ = f(X) + w (108)
Q = E(wwT )
Z = h(X) + v

R = E(vvT )

Size of X is [8n × 1], and it consists of position, velocity,
attitude and gyro biases of itself and other (n − 1) MAVs

in its sensor range. Z consist of 4n IMU measurement and
(n− 1) range and (n− 1) bearing measurements. Size of Z
is therefore [2(n− 1) + 4n× 1]. X and Z in the vector form
are given by

X = [x1, y1, v1
x, v

1
y,Ψ

1,Φ1, b1Ψ, b
1
Φ,

· · · , xn, yn, vnx , v
n
y ,Ψ

n,Φn, bnΨ, b
n
Φ]T (109)

Z = [a1
x, a

1
y, Ψ̇

1
gyro, Φ̇

1
gyro, · · · , anx , any ,

Ψ̇n
gyro , Φ̇ngyro, R12, φ12, · · · , R1n, φ1n]T (110)

Both system dynamics and measurement are nonlinear, there-
fore, both of them are linearized for estimation.

F =
∂f(x)
∂x
|x=x̂ (111)

H =
∂h(x)
∂x
|x=x̂ (112)

State and covariance propagation are given as

xk = x̂k−1 + ˆ̇xk−1Ts (113)

P
(−)
k = ΓkPk−1ΓTk +Qk (114)

where Γk is transition matrix given by I + FkTs, Qk is the
process noise covariance matrix, and Ts is sampling time

The gain of EKF during the measurement is given by

Kk = P
(−)
k HT (HP (−)

k HT +Rk)−1 (115)

State and Covariance update are given as

x̂k = xk +Kk[Zk − h(xk)] (116)

Pk = (I −KkH)P (−)
k (117)

In this section we fused the IMU measurements from all
the MAVs in the group with the respective range and bearing
measurement taken from onboard range and bearing sensors
of a MAV. This fused data is then sent as input to EKF
explained above, and navigation states of all the MAVs is
estimated within the group.

3) Observability Analysis: In this section we perform
observability analysis of the CNS to check which states are
observable and which are not. We also study the limitations
posed by non-observability of states on the accuracy of the
CNS. For understanding purpose we do this analysis for a
group of two MAVs with constant velocity, which can easily
be extended for multiple MAVs. State and measurement
vector for two MAVs is given as

X = [x1, y1,Ψ1,Φ1, b1Ψ, b
1
Φ, x

2, y2,Ψ2,Φ2, b2Ψ, b
2
Φ]T

Z = [Ψ̇1
gyro, Φ̇

1
gyro, Ψ̇

2
gyro, Φ̇

2
gyro, R12, φ12]T

EKF is an asymptotic observer given as,

x̂k+1 = Γkx̂k +Kk(Zk −Hx̂k) (118)

EKF chooses gain Kk which makes (Γk −KkH) stable, so
that state estimation error x̃ is asymptotically stable.

x̃k+1 = (Γk −KkH)x̃k (119)



EKF or any asymptotic observer can choose, gain Kk, so that
(Γk −KkH) have desired eigenvalues (inside unit circle), if
and only if (Γk, H) is observable.

A system is observable if states can be distinguished in the
state space. Observability of nonlinear systems can be found
using Lie derivatives. Let

l(x) =

 L0
f (h)
· · ·

Ln−1
f (h)

 (120)

Where

Z = h = L0
f (h)

Ż = ḣ = L1
f (h)

· · ·
Zn−1 = Ln−1

f (h)

Observability matrix O using Lie derivatives is computed as

O =
∂l(x)
∂x

(121)

A system is observable if rank of observability matrix is n.
To find observable and unobservable states we compute null
space of the observability matrix. Null space of observability
matrix O for CNS (with no accelerometer) with two MAVS
is given as

N(O) =



0 0 1
1 x1−x2

y1−y2 −x
1−x2

y1−y2

0 1
y1−y2 − 1

y1−y2

0 0 0
0 0 0
0 0 0
0 1 0
1 0 0
0 1

y1−y2 − 1
y1−y2

0 0 0
0 0 0
0 0 0



(122)

Thus postion and heading of both MAVs
(x1, y1,Ψ1, x2, y2,Ψ2) is not directly observable, whereas
roll angle and gyro biases (Φ1, b1Ψ, b

1
Φ,Φ

2, b2Ψ, b
2
Φ) are not

in the null space N(O). Hence, roll angle and biases are
observable. To find observable modes we compute the row
reduced echelon form of the Observability matrix O, given
as.

O =



1 0 0 0 0 0 −1 0 y1 − y2 0 0 0
0 1 0 0 0 0 0 −1 x2 − x1 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



Observable modes computed from row reduced observabil-
ity matrix (O) are given as.

x1 − x2 + (y1 − y2)Ψ2

y1 − y2 + (x2 − x1)Ψ2

Ψ1 −Ψ2

Φ1

b1Ψ
b1Φ
Φ2

b2Ψ
b2Φ


(123)

First three modes in (123) shows that position and heading
of both MAVs are not directly observable. But it can be seen
in (123) that if initial position is known then heading of
both MAVs becomes observable. Hence CNS gives accurate
estimates of heading with bias and roll angle if initial position
of MAVs is known.

Observability analysis can be summarized as (1) if we use
only IMU without any range and bearing measurement then
the IMU bias is unobserved and error in estimates grows with
time (2) when range and bearing observations are fused with
IMU output then the bias and relative position and relative
heading becomes observable. Therefore, if we start at the
known position and heading but unknown biases CNS is
still able to estimate navigation states with small error even
though covariance error in position and heading is growing.
This is possible only if we know initial position and heading.

In this section we detailed observability analysis for the
CNS which demonstrates that in the CNS biases, relative
position and heading are observable. Due to this fact, the
CNS constrains the IMU drift significantly. In order to
validate our technique we present simulation results in the
next section.

B. Simulation Results

In this section we present simulation results to show (1)
that the CNS significantly reduces IMU drift, (2) it reduces
drift even if biases are zero, (3) gives reasonable estimates
with bearing only measurements, and (4) effect of the number
of MAVs observed by CNS on the accuracy of CNS.

To simulate CNS and compare it with an IMU only
navigation system, we developed a MATLAB environment
implementing the dynamic model of MAV described in
section II.A. We randomly select the initial position and
initial heading of 5 MAVs, with constant bias in all the gyros
of each MAV. Measurement and system noise is assumed to
be white, with standard deviation σR = 4m, σφ = 5o and
σgyro = 2o.

First we show that the CNS achieves significantly im-
proved navigation state estimates compared to an IMU only
system. Figures 23, 24, and 25 demonstrate the location,
heading, and velocity estimates, respectively, calculated using
CNS and an IMU only system. It can be seen that CNS
significantly constrains the drift in X and Y position, heading,
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and velocity. Note that the majority of the improvement in
CNS estimation vs. IMU-only is due to the observability of
the IMU biases achieved when using CNS.

Even when the biases are not significant, however, CNS
still can decrease the amount of drift compared with an IMU-
only system. In Fig 26, we plot the error in X estimates
with biases on the gyros set to zero. Note that the error
in CNS estimates grwos slower then IMU estimates of the
observation of relative location between the MAVs. Hence
CNS not only estimates biases accurately but also constrains
drift due to noise.
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Third, we demonstrate that CNS can be utilized even if
range measurements are not available. In practice it is very
difficult to have correct range measurements, but bearing
measurements can be obtained easily and accurately from a
camera. So we simulate the same scenario presented earlier
in Fig 23, Fig24, and Fig 25, with no range measurements.
In Fig 27 and Fig 28, we present results showing that
the error in estimates with bearing-only measurements is
higher than when both range and bearing measurements are
present. However, the bearing-only scenario still represents
at least one order of magnitude improvement over IMU only
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navigation.
Finally, simulations are carried out to determine the effect

of increasing the number of MAVs that are currently observed
by the CNS. Fig 27 shows the uncertainty in X and Y varying
with number of MAVs, while Fig 28 shows the uncertainty
in heading. Note that uncertainty decreases rapidly with an
increase in number of MAVs when the number of MAVs
are few, while adding an extra MAV when multiple MAVs
are already present has less effect. Because the decrease
in uncertainty is more pronounced with few MAVs, the
practicality of a CNS with only a few MAVs (5 or less)
is demonstrated.

VIII. DRIFT-FREE MULTI-AGENT NAVIGATION

In the previous section, we have demonstrated the signif-
icant reductions in drift that can be achieved through multi-
agent navigation. In this section, we specifically analyze the
conditions required for enabling navigation without drift in a
cooperative setting. We assume that a sparse set of landmarks
with known location are available, but that each agent may
not be able to observe these landmarks. The exteroceptive
sensor used by each agent is a bearing-only sensor such
as an electro-optical camera. As a motivating case, consider
the scenario of multiple robots exploring a building. If two
robots with GPS remain stationary just outside the building,
then these robots can be observed as landmarks with known
location by other robots. Inside the building, however, there
will be walls and other occlusions between the indoor robots
and the landmark robots outside the building. The central
question addressed in this section is under what conditions
can every robot in the system still have drift-free navigation
despite occluded views of the landmarks.
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The primary tool we utilize to prove conditions for drift-
free navigation is non-linear observability analysis. In the
past, observability analysis has proven useful when designing
navigation systems for single vehicles. Cho et al. [110] use
observability analysis to improve the performance of IMU-
GPS navigation. IMU and camera calibration is investigated
using observability theory in [111]. Observability analysis for
simultaneous localization and mapping (SLAM) algorithms
is discussed in [112], [113], leading to control methods
for maximizing the observability of the system. For multi-
agent systems, [114] uses observability analysis to prove the
necessary and sufficient number of range measurements to
determine relative pose between two agents. Our work is
similar to [114] in that we prove necessary and sufficient
conditions for determining relative pose between two agents
using a bearing-only sensor.

1) Contributions: The primary contributions of this sec-
tion are:
• Necessary and sufficient conditions for relative pose es-

timation between two agents using bearing-only sensors.
• The establishment of a direct link between network

topology and the rank of the observability matrix.
• Derivation of conditions required to enable drift-free

navigation in a multi-agent system.
• A report on real hardware demonstrating the feasibility

and practicality of our proposed approach.
2) Section Organization: The rest of the section is orga-

nized as follows. Section VIII-A describes our cooperative
navigation system. Section VIII-B presents the observability
analysis using a graph to represent communication and mea-
surement relationships between agents and derives necessary
and sufficient conditions for complete observability. Section
VIII-D presents simulation results verifying the analysis.



Fig. 29. This figure illustrates the general class of problems addressed in
this section. Note that the connections between robots and fixed landmarks
are sparse.

Results using real hardware are presented in Section VIII-E.

A. Bearing Only Cooperative Navigation

The problem that we consider in this section involves
a group of N robots with on-board cameras that can be
used to observe the bearing of neighboring robots or of
fixed landmarks. The turn rate and velocity of each robot
is measured by two wheel encoders. We also assume that
the measurements and communications between robots are
limited by range. An example of this scenario is shown in
Fig. 29, where three fixed landmarks denoted by circles and 5
robots are present in the environment. In addition to showing
a distribution of robots and landmarks, Fig. 29 also illus-
trates the concept of a relative position measurement graph
(RPMG). The RPMG is an ordered pair (X,E) consisting of
a set of vertices X as robots and the edges E, representing
bearing measurements between two vertices. Note that not
all robots in the environment are observing a landmark.
Each edge in the graph between two robots signifies that
relative bearing measurements occur between the two robots
and that they can communicate information with each other.
Note that the graph in Figure 29 does not have every robot
communicating with every other robot, but rather has a sparse
set of edges. We assume that all edges in the graph are bi-
directional.

Using this basic scenario, we would like each robot to be
capable of estimating its navigation state without drift. To
more fully describe this system, we will first describe the
kinematic model for each robot, followed by the information
communicated and used for navigation state estimation.

The navigation state for the ith robot is

Xi = [xi, yi, ψi]T , (124)

where xi and yi are the Cartesian coordinates of the robot
with respect to a world coordinate frame, and ψi is the current
heading of the robots.

The kinematics for each robot is given by

Ẋi =

 Vi cos(ψi)
Vi sin(ψi)

ωi

 (125)

where Vi and ωi are the robot velocity and turn rate,
respectively. We assume Vi ≥ 0 and 0 ≤ ψi ≤ 2π.

The exteroceptive measurements obtained by each robot
are the bearing of landmarks and other robots as measured
by a camera. The bearing angle measured between robot i
and object j is given by

ηij = tan−1 yj − yi
xj − xi

− ψi + vij , (126)

where vij is normally distributed, white noise with standard
deviation σv . If the ith robot has ni robots and mi landmarks
in its field of view, then the measurement vector for ith robot
is given by

Zi = [ηi,1, ηi,2, · · · ηi,k], (127)

where k = ni +mi.
With the measurement and state vector for each robot

defined, we can define the system state as

X = [XT
1 , X

T
2 , · · · , XT

N ]T , (128)

where X ∈ R3N , and the total measurement vector as

Z = [ZT1 , Z
T
2 , · · · , ZTN ]T , (129)

where Z ∈ RM and M =
∑N
i=1(nI +mi).

For state estimation, an Extended Kalman Filter (EKF)
is used with the state vector defined in Equation (128) and
the measurement vector defined in Equation (129). The full
equations for the EKF are:

X̂(k|k − 1) = X̂(k − 1|k − 1) + Ẋ(k − 1|k − 1)Ts (130)
P (k|k − 1) = FkP (k − 1|k − 1)FTk +Qk (131)

Kk = P (k|k − 1)HT
k (HkP (k|k − 1)HT

k +Rk)−1(132)
X̂(k|k) = X̂(k|k − 1) +Kk[Zk − h(X̂(k|k − 1))](133)
P (k|k) = (I −KkHk)P (k|k − 1), (134)

where X̂(k|k−1) represents the estimate at time k given the
measurements up through time k− 1, Fk = I3n×3n+Ts

∂Ẋi

∂Xi

is the transition matrix of the kinematic equations (125), h(·)
is the measurement equation expressed in (126), Hk is the
Jacobian of that equation, and Ts is the sample time.

B. Observability Analysis

A system is observable if its states can be distinguished
using a finite sequence of measurements. Observability anal-
ysis is a well-established method for determining whether
the information available from measurements is sufficient to
estimate the states[116]. If the entire state is not observable,
the observability analysis can also be used to determine
which states or linear combination of states are unobservable.
Therefore, we undertake an observability analysis of the
cooperative navigation system described in Section VIII-A
to determine if it is possible to enable drift-free navigation.
If the system is fully observable, it means that the estimation
error can be limited by the input measurement noises and
will not increase with time.



In the two sections that follow, we briefly review how ob-
servability is computed for non-linear systems and introduce
some terminology used to describe the connections in our
cooperative navigation system.

1) Computing observability for a non-linear system:
Because the system is non-linear (e.g., bearing-only mea-
surements and robot kinemetics) we cannot apply traditional
linear techniques for evaluating observability. Instead, we
analyze local observability in a non-linear system as intro-
duced in [117]. The observability of nonlinear systems can
be determined using Lie-derivatives. Let

l(x) =

 L0
f (h)
· · ·

Ln−1
f (h)

 (135)

be a column vector of Lie-derivatives where

L0
f (h(x)) = h(x)

L1
f (h(x)) =

〈
∂

∂x
[L0
f (h(x))], Ẋ

〉
· · ·

Ln−1
f (h(x)) =

〈
∂

∂x
[Ln−2
f (h(x))], Ẋ

〉
.

Note that the < a, b > operator denotes the inner product of a
and b, and that we are assuming h(x) produces a single mea-
surement. If more than one measurement is available, each
measurement will add its own set of rows to a concatenated
observability matrix.

The observability matrix O using Lie-derivatives is com-
puted as

O(x) =
∂l(x)
∂x

. (136)

A system is locally observable at x if the observability matrix
is full rank at x. If O(x) is not full rank, the row space of
the matrix gives the locally observable modes at x, while the
locally unobservable modes at x are in the null space of O.

2) Observability analysis for an n-node RPMG: In this
section our objective is two determine the maximum achiev-
able rank of the nonlinear observability matrix for a RPMG
with n nodes. We show that the maximum rank is 3(n− 1).
Furthermore, we derive necessary and sufficient conditions
for achieving rank 3(n − 1) in terms of connectivity of the
graph and vehicle motion. To derive these conditions we first
compute the observability of a 2-agent system with bearing-
only measurements between the agents. From this analysis,
we state and prove four lemmas, leading to the final theorem
of this section on observability of cooperative navigation
systems without landmarks.

Observability analysis for a 2-node system
Let ηij be the bearing measurement between two vehicles
measured by the ith node (the sensor is physically located on
vehicle i). Vehicle motion is governed by Equation (125). The
combined state vector to be estimated is X = [Xi Xj ]T and
Ẋ = [fi, ωi, fj , ωj ]T , where, fi = [Vi cosψi Vi sinψi]T .

Let us now compute the non-linear observability matrix for
this two-node system.

Zeroth order Lie-derivative (L0
f(h)): From the definition

of Lie-derivatives we have,

L0
f(h) = ηij

First order Lie-derivative (L1
f(h)):

Differentiating L0
f(h) we obtain,

∇L0
f(h) =

[
HT

1ij −1 −HT
1ij 0

]
where,

HT
1ij =

[
−aij bij

]
, (137)

aij =
yi − yj
R2
ij

,

bij =
xi − xj
R2
ij

,

R2
ij = (xi − xj)2 + (yi − yj)2.

By definition,

L1
f(h) = ∇L0

f(h) · Ẋ
= HT

1ij(fi − fj)− ω1.

Second order Lie-derivative (L2
f(h)): Differentiating L1

f(h)

we obtain

∇L1
f(h) =

[
HT

2ij HT
1ijFi −HT

2ij −HT
1ijFj

]
where,

HT
2ij = (fi − fj)TJ1ij ,

J1ij =
∂Hij

∂Xi
=
[

2aijbij (a2
ij − b2ij)

(a2
ij − b2ij) −2aijbij

]
,(138)

Fi =
∂fi
∂ψi

=
[
−Vi sinψi
Vi cosψi

]
.

By definition we have,

L2
f(h) = ∇L1

f(h) · Ẋ
= (fi − fj)TJ1ij(fi − fj) +HT

ij(Fiωi − Fjωj)

Differentiating L2
f(h), we obtain

∇L2
f(h) =

[
HT

3ij HT
4ij −HT

3ij HT
5ij

]
where

HT
3ij = (fi − fj)TJ2ij + (Fiωi − Fjωj)TJ1ij ,

J2ij = 2(a2 + b2)[Ja2ijJ
b
2ij ](fi − fj),

Ja2ij =
[
a b
b −a

]
,

Jb2ij =
[
−b a
a b

]
,



HT
4ij = (fi − fj)TJT1ijFi +HT

2ijFi − ωiHT
1ijfi,

HT
5ij = −(fi − fj)TJT1ijFj −HT

2ijFj + ωjH
T
1ijfj .

Higher order Lie-derivatives will be linear combinations of
(fi−fj) and (Fiωi−Fjωj) and will therefore not contribute
to the rank of the observability matrix.

From this information we can write the observability
matrix for two vehicles with bearing measurement ηkij as,

Oij =

 ∇L
0
f(h)

∇L1
f(h)

∇L2
f(h)


=

 HT
1ij −1 −HT

1ij 0
HT

2ij HT
1ijFi −HT

2ij −HT
1ijFj

HT
3ij HT

4ij −HT
3ij HT

5ij

 .(139)

Lemma 1 (Two nodes): The observability matrix given in
Equation (139) has rank three if and only if the following
conditions are satisfied.

1) Vj > 0,
2) Ẋi 6= Ẋj .
3) ηij 6= 0 or η̇ij 6= 0.

Proof: To prove this lemma we will first prove the
sufficiency of the listed conditions, followed by a proof
of necessity. When the lemma’s conditions are satisfied,
the reduced-row echelon form (RREF) of the observability
matrix in Equation (139) is:

RREF (Oij) =

 1 0 0 −1 0 yi − yj
0 1 0 0 −1 xj − xi
0 0 1 0 0 −1

 ,
which is obviously a rank 3 matrix.

To prove the necessity of the lemma’s conditions, we
compute the observability matrix’s rank for the case when
the conditions are violated. First, to prove the necessity of
Vj 6= 0, we compute the observability matrix when Vi > 0
and Vj = 0.

1) Assume that Vi > 0 and Vj = 0. Plugging these into
139 we obtain,

Oij =

 HT
1ij −1 −HT

1ij 0
fTi J1ij HT

1ijFi −fTi J1ij 0
fTi J2ij 2fTi J

T
1ijFi −fTi J2ij 0

 ,
and rank(Oij) = 2 < 3.

2) Plugging Vi = 0 and Vj = 0 in (139) we,have

Oij =

 HT
1ij −1 −HT

1ij 0
01×2 0 01×2 0
01×2 0 01×2 0


Hence, rank(Oij) = 1 < 3.

This proves the necessity of Vj > 0.

If Ẋi = Ẋj , then fi = fj and ωi = ωj , leading to an
observability matrix of

Oij =

 HT
1ij −1 −HT

1ij 0
01×2 HT

1ijFi 01×2 −HT
1ijFi

01×2 α 01×2 −α


α = HT

2ijFi − ωiHT
1ijfi.

The rank of this matrix is 2, proving the necessity of Ẋi 6=
Ẋj .

Finally assume that ηij = 0, and η̇ij = 0. This condition
implies that η̇ij and higher derivatives are zero. Therefore,
rank(Oij) = 1 ≤ 3.

Remark 1: It can be verified that the three different sets
of measurements ηij , ηji and [ηij , ηji] all have the same ob-
servability rank and observable modes, assuming Vi, Vj > 0.
In the case that Vi = 0, ηij and [ηij , ηji] will both lead to
the same rank 3 observability matrix, while ηji leads to a
rank 2 observability matrix as shown above. If both Vi and
Vj are 0, then no set of bearing-only measurements between
the robots will create an observability matrix of rank 3.

Having determined the necessary and sufficient conditions
for obtaining three linearly independent observability vectors
between two nodes, we proceed to introduce a proper RPMG.

Definition 1: A proper RPMG is an ordered pair (X,E′)
consisting of a set of vertices X (the same set of vertices as
the original, physical RPMG), and a set of edges E′. The set
E′ is a subset of E from the original RPMG and is defined
as:

E′ = {e : e ∈ E and e = (i, j), rank(Oij) = 3}

The creation of a proper RPMG has two effects:

1) The proper RPMG simplifies further derivation of
conditions required for drift-free navigation. Rather
than repeatedly restating the conditions in Lemma 1,
we enforce the conditions by pruning edges from the
physical RPMG to create the proper RPMG.

2) The proper RMPG is the first step in creating a useful
link between the system observability matrix and the
graph structure of the system. We show in the follow-
ing sections that by analyzing the proper RPMG, the
overall observability of the system can be determined.

3) Observability of multi-agent systems:
Lemma 2 (Similarity of 3-node configurations): There

are four possible connected graphs for three nodes as
shown in Figure 30. Assuming these configurations are in a
proper RPMG, all four of these configurations yield a set of
vectors in the observability-matrix that span the same space.
Therefore, all four of the configurations lead to the same
rank of the observability matrix.

Proof: The reduced row echelon form (RREF) of the
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Fig. 30. The observability conditions between these four possible config-
urations of a connected, 3-vertex RPMG are identical. Of particular note,
we can perform redundant edge removal (subfigure (a)) or a side exchange
(subfigure (b)) and not change the observability of the system.

observability matrix for each connected 3-node graph is

RREF (Oijk) =

I6×6 :

−1 0 yi − yk
0 −1 xk − xi
0 0 −1
−1 0 yj − yk
0 −1 xk − xj
0 0 −1

 .
Because the RREF form of the four observability matrices
are the same, each 3-node connected graph introduces ob-
servability matrix vectors that span the same space.

To extend the observability analysis to arbitrarily large
graphs, we block partition the observability matrix Oij
for each measurement (edge eij) between vehicle i and j,
creating two sub-matrices Oiji and Oijj corresponding to the
columns for agent i and j, respectively. In an n vehicle
system, the sub-matrix Oiji will be placed in the columns
corresponding with agent i, leading to a 3×3n matrix of the
form:

Oij =
[

03×3(i−1) Oiji 03×(3(j−1)−3i) Oijj 03×(n−3j)

]
(140)

for each edge in the proper RPMG. The observability matrix
for the entire RPMG is derived by concatenating the ma-
trices from all edges in the graph. Using this form of the
observability matrix, we can prove several useful properties
of arbitrary proper RPMGs.

Lemma 3 (Equivalent Graphs): Given a proper RPMG,
any three-node connected sub-graph can be replaced with any
other connected three-node sub-graph without modifying the
rank of the associated observability matrix.

Proof: Given the block form of the observability matrix
shown in Equation (140), this is a simple extension of
Lemma 2.

Lemma 4 (Two level tree): A proper RPMG with n nodes,
consisting of a single node connected directly to all other
nodes in the network, with no other edges present in the
network (a two-level tree, e.g., Figure 31(f)), will have a
local observability matrix of rank 3(n− 1).

Proof: Assume without loss of generality that the root
node is labeled i = 1. In this case, the system observability

matrix can be written in block form as

O1,...,n =


O12

1 O12
2 03×3 · · · 03×3

O13
1 03×3 O13

3 · · · 03×3

...
... · · ·

. . .
...

O1n
1 03×3 · · · 03×3 O1n

n

 . (141)

Because O1j
j is the only non-zero entry in the jth block

column, its contribution to the observability matrix rank will
be linearly independent of the contribution of O1k

k for any
k 6= j. From Lemma 1, if Vi 6= 0 and Ẋi 6= Ẋj , then each
O1j block row will have three linearly independent rows.
Because there are n − 1 edges in a two-level tree, the local
observability matrix will have 3(n− 1) linearly independent
rows.

Theorem 1: Any connected, proper RPMG of n nodes will
have an observability matrix rank of 3(n− 1).

Proof: Using Lemma 4, this theorem can be restated as:
“Any connected, proper RPMG has the same local observ-
ability matrix rank as a two-level tree.” To prove equivalence,
we present an algorithm that converts any connected proper
RPMG to a two-level tree. Every step in this algorithm
preserves rank of the observability matrix, proving the rank-
equivalence between any connected proper RPMG and a two-
level tree. A pictorial representation of this algorithm is also
shown in Figure 31.

Algorithm:
1) Randomly choose a node, i that will become the root

node of the two-level tree.
2) Compute the minimum distance of all nodes in the

graph to node i.
3) Place all non-root nodes nodes in one of two sets: (1)

nodes that are minimum distance 1 away from node
i (S1), and (2) nodes that are more than minimum
distance 1 away from node i (S2).

4) Select a node (j) in S2 that is distance 2 away from
node i. Select a node (k) in set S1 that connects to
both i to j. Note that these three nodes (i, j, k) from a
three-node connected sub-graph.

5) Replace the three-node connected sub-graph with a
three-node connected sub-graph where both nodes j
and k are distance 1 away from node i (a side exchange
step). Recompute the distance of all nodes from i and
re-form sets S2 and S1. Using Lemma 3, this new graph
is rank-equivalent to the original graph.

6) Repeat steps 4 and 5 until S2 = ∅. Note that with each
execution of these two steps, a single node is removed
from S2 and added to S1. The minimum distance of
other nodes in S2 may also decrease. Because the graph
is always connected, all nodes will eventually move to
S1 as this algorithm executes.

7) Select an edge (ejk) between two nodes (j, k) in S1.
Form a three-node connected sub-graph between nodes
i, j, and k. Replace with a sub-graph that connects i
to j and i to k, but removes ejk (a redundant edge
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Fig. 31. An example of converting a connected RPMG to a two-level tree
as described in Theorem 1. The subfigures correspond with: (a) the original
RPMG, (b) Side exchanges to bring two nodes distance 2 from the root
node to distance 1 (step 5), (c) two more side exchanges, (d) the final side
exchange, resulting in a graph where every “non-root” node is distance 1
away from the root, (e) the removal of any redundant edges (step 7) and (f)
the final, two-level tree.

removal step). From Lemma 3, this modification does
not affect the observability matrix rank.

8) Repeat step 7 until no edges are found between nodes
in S1.

Corollary 1: If a proper RPMG contains m disjoint sub-
graphs and n nodes, the total observability matrix rank will
be 3n− 3m.

C. Observability analysis of n-node RPMG with known
landmarks

Up to this point we have assumed that the only information
available to the agents performing navigation are interocep-
tive sensor measurements and measurements of other agents
in the system. The maximum rank of the observability matrix
with these restrictions is 3(n − 1). In other words, while
the relative location and orientation of every agent with
respect to all other agents can be observed, the global location
and orientation is unobservable. This unobservability of the
global position and orientation will cause the system to drift
over time.

To enable drift-free navigation, more measurements must
be available to the system to obtain a full-rank observability
matrix. In this section, we show that by adding a minimal
number of landmarks with fixed location, the entire system
becomes observable, enabling drift-free navigation. We begin
by deriving the observability matrix vectors obtained by
a single agent obtaining bearing-only measurements of a
landmark. We then derive necessary and sufficient conditions
for a fully observable system.

1) Vehicle-Landmark observability: Assume that vehicle
i measures bearing ηip from a known landmark p. Note that
in this case, we are only concerned with the navigation state
of the agent as the landmark location is already known. The
Lie-derivatives of this observation follow.

Zeroth order Lie-derivative:

L0
f(h) = ηip

First order Lie-derivative: Differentiating L0
f(h) we obtain,

∇L0
f(h) =

[
HT

1ip −1
]

where, HT
1ip is defined in (137).

By definition,

L1
f(h) = ∇L0

f(h) � Ẋ

= HT
1ipfi − ωi

Second and higher order Lie-derivatives will be multiples
of fi and Fi. Therefore, the maximum contribution of any
one landmark measurement to the observability matrix rank
is 2.

Differentiating L1
f(h) we obtain

∇L1
f(h) =

[
HT

2ip HT
1ipFi

]
where,

HT
2ip = fTi J1ip

and J1ip is defined in (138). Therefore, the observability
matrix of bearing measurements between a vehicle and
landmark can be written as,

Oipi =

[
∇L0

f(h)

∇L1
f(h)

]
(142)

=
[
HT

1ip −1
HT

2ip HT
1ipFi

]
. (143)

In reduced row echelon form, we obtain:

RREF (Oipi ) =
[

1 0 yi − yp
0 1 xp − xi

]
. (144)

Remark 2: The number of linearly independent rows
achieved by a single landmark observation will be two if
and only if following conditions are satisfied:

1) Vi > 0.
2) ηip 6= 0 or η̇ip 6= 0

2) Landmark observability with multiple agents: We now
extend the one vehicle observability of landmarks to multi-
vehicle systems. Note that observations of a landmark by
agent i can be added to the observability matrix using the
block form

Oip = [03×3(i−1)) Oipi 03×3(n−i)]T

Remark 3: Due to the block-matrix form of the system
observability matrix, the observability matrix vectors due to
observing landmarks and those due to observing other agents
are always linearly independent.



Lemma 5: The number of linearly independent observabil-
ity rows due to landmark observations in a connected, proper
RPMG is equal to

min

3,
∑
p∈L

min

(
2,
∑
i∈X

rank(Oip)

) ,

where L is the set of landmarks observed by any node within
the graph.

Proof: Assume a 2-agent network with one agent-to-
agent measurement and one landmark p. The observability
matrix for this network can be written as

O =
(
Oiji Oijj
Oipi 02×3

)
. (145)

Finding the reduced row echelon form of this matrix, we
obtain:

RREF (O) =


1 0 0 −1 0 yi − yj
0 1 0 0 −1 xj − xi
0 0 1 0 0 −1
0 0 0 1 0 yj − yp
0 0 0 0 1 xp − xj

 . (146)

Note that this is equivalent to

RREF (O) =

[
Oiji Oijj
02×3 Ojpj

]
. (147)

This rank-equivalent matrix transformation demonstrates
two important points:
• The measurement of a landmark by an agent is equiva-

lent, in terms of observability, to any other agent observ-
ing the same landmark. Because the maximum number
of linearly independent rows that can be achieved from
observing a landmark is two, the number of linearly
independent rows in the observability matrix due to a
single landmark will be:

min

(
2,
∑
i∈X

rank(Oip)

)
.

• If an agent observes another landmark q, the measure-
ment of q causes linearly independent rows to be added
to the observability matrix if and only if the location
of q is different from the location of p. Therefore,
the observation of additional landmarks increases the
number of linearly independent rows in the observability
matrix in an additive manner, leading to∑

p∈L
min

(
2,
∑
i∈X

rank(Oip)

)
linearly independent rows in the observability matrix.

Combining these two observations with the fact that (a) the
maximum rank of the observability matrix is 3n and (b) the
observability matrix of a connected proper RPMG already

has 3(n−1) linearly independent rows, the number of linearly
independent rows added to the observability matrix with the
observation of known-location landmarks will be:

min

3,
∑
p∈L

min

(
2,
∑
i∈X

rank(Oip)

) ,

Corollary 2: Using Lemma 5, we can derive three basic
conditions under which the local observability matrix rank is
increased by three. These conditions are:
• Observing three landmarks anywhere within the sys-

tem, irrespective of agent movement. As each landmark
observation adds at least one linearly independent row
to the observability matrix, three landmarks is always
sufficient for full observability of a connected, proper
RPMG.

• Observing two landmarks anywhere within the system,
with one landmark observed by at least two agents,
irrespective of agent motion. Any one landmark can
provide up to two linearly independent rows to the
observability matrix. Even if agents are not moving,
having two agents observe the same landmark will
still lead to two linearly independent rows from the
one landmark. Adding one other landmark yield three
linearly independent rows in the observability matrix.

• Observing two landmarks, with at least one observing
agent moving (V > 0) not directly at the landmark it is
observing. From Lemma 2, if an agent is moving, two
linearly independent rows are obtained from observing
a single landmark. By adding one more landmark, three
linearly independent rows are obtained.

We now state the main theorem of the section:
Theorem 2 (Drift-free Navigation): Consider a RPMG

with n agent nodes and m different landmarks. This system
is completely observable (i.e, rank(O) = 3n) if the proper
RPMG is connected and one of the following conditions are
true: (1) m ≥ 3, (2) m = 2 and at least one landmark is
observed by more than one agent, or (3) m = 2 and one of
the observing agents is moving.

Proof: This theorem is proved by combining Theorem 1
and Lemma 5. In any of the scenarios discussed in this
theorem, the rank of the observability matrix will be 3n.

Corollary 3: In a proper RPMG with disjoint sub-graphs,
drift-free navigation is still achieved when each sub-graph
meets one of the conditions in Theorem 2.

D. Simulation Results

To validate the theorems developed in previous sections,
we simulated cooperative navigation with a group of ten
vehicles and two landmarks. We assume that only two
agents have access to the landmark positions. Every vehicle
has a sensor from which it can measure bearing to other
vehicles and landmarks within its sensor range Rsensor.
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Fig. 32. Initial RPMG with 10 vehicle nodes and two known landmarks.
Only vehicle one and two have the access to the landmark location. The
circles around each node represent the initial 3σ uncertainty, the red circle
represents the true position of the agents, and the black diamonds represent
the estimated position.

We also assume that the graph is always connected. Ini-
tial position and heading uncertainty on each vehicle is
[Px0 Py0 Pψ0 ] = [5m 5m 0.1rad]. Each vehicle velocity
is V = 4m/s. The standard deviation of the noise on
the velocity and turn rate measurements for each vehicle
is [σv σω]T = [0.2m/s 0.2rad/s]T . The initial RPMG of
ten vehicles and two landmarks with initial 3σ uncertainty
(t = 0s) is shown in Fig. 32. Fig. 33 and 34 shows the RPMG
at t = 10s and t = 40s respectively. It can be seen that the
uncertainty in position estimates of each vehicle decreases
with time, verifying the observability of all agent’s navigation
states. Fig. 35 and 36 shows the navigation state estimation
error for vehicle one and vehicle six respectively. Vehicle
one has access to the landmark positions whereas vehicle six
does not have direct access. Despite this difference, the error
in all three states ([x, y, ψ]) decrease over time to a constant
bound. Note also that these plots show navigation accuracy
over a period of 1000s, demonstrating the independence of
the navigation error to the amount of time the system has
been running.

Contrast these results with the error plots shown in Fig-
ure 37. These error plots represent the case when cooperative
navigation is used across ten agents, but no fixed landmarks
are present in the environment. In contrast to the case with
two landmarks available to the system, the error increases
with time due to the unobservability of the system.

E. Experimental Results

To demonstrate the feasibility of our drift-free navigation
in real-world systems, we prototyped a cooperative naviga-
tion system with 3 robots. Each robot (shown in Figure 38)
uses wheel encoders to measure turn rate and velocity, an
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Fig. 33. The RPMG at t = 10s. The interpretation of this graph is the
same as Figure 32. Note that the uncertainty in navigation estimates has
decreased for all nodes compared to Figure 32
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Fig. 34. The RPMG at t = 50s. The interpretation of this graph is the
same as Figure 32. By this time, the navigation state uncertainties for all
nodes have essentially reached their lower bound.

omnidirectional camera to measure other robots and fixed
landmarks, and an ASUS EEE PC for on-board control,
image processing, and communication. The experimental
setup is shown in Fig. 39. It consist of three robots with
different colors (green, blue, and orange), simplifying the
identification of the robots in other robot’s images. The
robots communicate using an 802.11 wireless router. The
environment is instrumented with an overhead camera to
obtain the true navigation states of the robots. Figure 40
shows the trajectory of three robots generated by encoders,
the cooperative navigation system (CNS), and truth. It can
be seen that the CNS estimates are very close to the true
states. In Figure 41, 42, and 43, we show the CNS and
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Fig. 35. Navigation state error plots of vehicle 1 (vehicle one has access
to landmark positions). The red curve is the error in the CNS state estimate
and blue curves represents the ±3σ bounds. Note that the 3−σ bounds are
not increasing with time.

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20

Time(s)

E
rr

o
r 

in
 X

 (
m

)

 

 
Errorx
+3!x
−3!x

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20

Time(s)

E
rr

o
r 

in
 Y

 (
m

)

 

 
Errory
+3!y
−3!y

0 100 200 300 400 500 600 700 800 900 1000
−0.2

0

0.2

Time(s)

E
rr

o
r 

in
 "

 (
ra

d
)

 

 
Error

"

+3!
"

−3!
"

Fig. 36. Navigation state error plots of vehicle 6 (no direct access to
landmark positions). The red curve is the error in the navigation state
estimate and blue curves represents the ±3σ bounds. Note that Despite
the lack of direct access to a landmark, the error bounds are not increasing
with time.

encoder estimation error in X , Y , and ψ, respectively, for
the blue robot. We also show the ±3σ bounds. Note that the
estimation error of the CNS is bounded with time (over 600s),
while the encoder navigation estimates contain significant
drift.

IX. RESULTS OF FUNDING

As a result of the funding provided for this work, the
following papers were published:
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Fig. 37. Navigation state error plots of a vehicle when there are no
landmarks in the system. Red curve is the error in the navigation state
estimate and blue curves represents the ±3σ bounds. Note that the error
bounds are increasing with time.

Fig. 38. Stinger robot assembly with serializer, EEE PC and omnidirectional
camera

Fig. 39. Experimental setup with three robots. An overhead camera is used
to measure truth values. Each agent communicates with the other agents
through an 802.11 wireless network.
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Fig. 40. Trajectory generated by CNS, encoders and overhead camera.
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Fig. 41. Error in X (Blue Robot): Error in CNS estimate (blue curve).
Error in encoder estimate (red curve). Black curves are ±3σ bounds.
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Fig. 42. Error in Y (Blue Robot): Error in CNS estimate (blue curve).
Error in encoder estimate (red curve). Black curves are ±3σ bounds.
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Fig. 43. Error in ψ (Blue Robot): Error in CNS estimate (blue curve).
Error in encoder estimate (red curve). Black curves are ±3σ bounds.

A. Journal Papers

1) “A Comparison of Two Image and Inertial Sensor
Fusion Techniques for Navigation in Unmapped Envi-
ronments,” C.N. Taylor, M.J. Veth, J.F. Raquet, M.M.
Miller, accepted in IEEE Transactions on Aerospace
and Electrical Systems.

2) “Enabling Navigation of MAVs through Inertial, Vi-
sion, and Air Pressure Sensor Fusion,” C.N. Taylor,
Lecture Notes in Electrical Engineering, v. 35, pp. 143-
158, 2009.

3) “Inertially Aided Visual Odometry for Miniature Air
Vehicles in GPS-denied Environments,” B.B. Ready,
C.N. Taylor, Journal of Intelligent and Robotic Sys-
tems, v. 55, no. 2-3, pp. 203-221, 2009.

4) “Stabilization of Video from Miniature Air Vehicles for
Target Localization,” D.L. Johansen, J.K. Hall, R.W.
Beard, C.N. Taylor, Journal of Aerospace Computing,
Information, and Communication, Vol 5, no. 8, pp. 251-
273, 2008.

B. Conference Papers

1) “Cooperative GPS Navigation,” S. Quebe, J. Campbell,
S. DeVilbiss, C.N. Taylor, accepted in Proceedings,
IEEE Precision Location and Navigation Symposium,
2010.

2) “Creation of Geo-Referenced Mosaics from MAV
Video and Telemetry using Constrained Optimization
and Bundle Adjustment,” B. Heiner and C.N. Taylor,
in Proceedings, IEEE International Conference on In-
telligent Robots and Systems, 2009.

3) “Reactive Collision Avoidance for Fixed-wing MAVs
Flying in Urban Terrain,” R. Sharma, J. Saunders, C.N.
Taylor, and R.W. Beard, in Proceedings, AIAA Con-
ference on Guidance, Navigation, and Control, 2009.

4) “Improved MAV Attitude Estimation Through Coupled
Acceleration Estimation,” B. B. Ready and C. N.



Taylor, in Proceedings, Institute of Navigation, Inter-
national Technical Meeting, 2009.

5) “Long-term Accuracy of Camera and IMU Fusion-
based Navigation Systems,” C. N. Taylor, in Proceed-
ings, Institute of Navigation, International Technical
Meeting, 2009.

6) “Vision-based Distributed Cooperative Navigation for
MAVs in GPS Denied Areas,” R. Sharma and C. N.
Taylor, AIAA Infotech@Aerospace, 2009.

7) “Payload Directed Flight of Micro Air Vehicles,” R.W.
Beard, C.N. Taylor, J. Saunders, R. Holt, T.W. McLain,
AIAA Infotech@Aerospace 2009.

8) “An Automatic System for Creating Geo-referenced
Mosaics from MAV Video,” C.N. Taylor and E.D. An-
dersen, in Proceedings, IEEE International Conference
on Intelligent Robots and Systems, Nice, France, Sept.,
2008

9) “Fusion of Inertial, Vision, and Air Pressure Sensors
for MAV Navigation,” C.N. Taylor, in Proceedings,
IEEE International Conference on Multi-sensor Fusion
and Integration for Intelligent Systems, Seoul, Korea,
Aug., 2008.

10) “Cooperative Navigation of MAVs in GPS-Denied Ar-
eas,” R. Sharma, C.N. Taylor, in Proceedings, IEEE
International Conference on Multi-sensor Fusion and
Integration for Intelligent Systems, Seoul, Korea, Aug.,
2008.

11) “Onboard System for Synchronizing Video and
Telemetry on a Small UAV,” A. Rodriguez, C. Taylor,
Y. Aregawi, R. Dennis, and T. Jenkins, SPIE Defense,
Security, and Sensing Conference, Orlando, FL, March
2008.

12) “Improving MAV Pose Estimation Using Visual Infor-
mation,” E.D. Andersen and C.N. Taylor, published in
Proceedings, IEEE International Conference on Intel-
ligent Robots and Systems, San Diego, CA, Oct-Nov,
2007.

13) “Wind Estimation Using an Optical Flow Sensor on
a Miniature Air Vehicle,” A. Rodriguez, E. Andersen,
J. Bradley, and C.N. Taylor, published in Proceedings,
AIAA Conference on Guidance, Navigation, and Con-
trol, Hilton Head, SC, Aug 2007.

14) “Particle Filter Based Mosaicking for Tracking Forest
Fires,” J. Bradley and C.N. Taylor, published in Pro-
ceedings, AIAA Conference on Guidance, Navigation,
and Control, Hilton Head, SC, Aug 2007.

15) “Improving Accuracy of MAV Pose Estimation using
Visual Odometry,” B.B. Ready and C.N. Taylor, pub-
lished in Proceedings, 2007 American Control Confer-
ence, pp.3721-3726.

C. Theses

1) “A Surveillance System to Create and
Distribute Geo-referenced Mosaics from
SUAV Video,” Evan Andersen, M.S. Thesis,

Brigham Young University, 2008. Available at
http://contentdm.lib.byu.edu/ETD/image/etd2416.pdf.

2) “Real-time Wind Estimation and Video
Compression On-board Miniature Aerial
Vehicles,” Andres Rodriguez-Perez, M.S. Thesis,
Brigham Young University, 2009. Available at
http://contentdm.lib.byu.edu/ETD/image/etd2792.pdf.

3) “Construction of Large Geo-referenced
Mosaics from MAV Video and Telemetry
Data,” Benjamin Heiner, M.S. Thesis,
Brigham Young University, 2009. Available at
http://contentdm.lib.byu.edu/ETD/image/etd3045.pdf.

D. Students Funded

In addition to the publications listed above, the following
students each received full or partial funding from this
contract:

• Evan Andersen, M.S. student (graduated April 2008).
• Andres Rodriguez-Perez, M.S. student (graduated April

2009).
• Benjamin Heiner, M.S. student (graduated June 2009).
• Bryce Ready, PhD student (estimated graduation, April

2011).
• Rajnikant Sharma, PhD student (estimated graduation,

December 2011).

X. CONCLUSION AND FUTURE WORK

Over the three-year course of this contract, significant
advances were made in (1) the fusion of inertial and visual
sensors using frame-to-frame tracking techniques, (2) per-
forming detailed comparisons between frame-to-frame track-
ing and SLAM techniques, and (3) enabling multiple-agent
navigation techniques. These advances results in several
published journal and conference papers, and two masters’
thesis were completed on this project. Two PhD students
(Bryce Ready and Rajnikant Sharma), while not yet finished
with their PhDs, will soon be finished and were primarily
supported by this research contract.

In the future, the work on multi-agent navigation holds
significant promise for enabling complex missions in GPS-
denied areas. By utilizing multiple agents, missions of un-
bounded length can be performed without regard to navi-
gation accuracy. Therefore, techniques that enable practical
utilization of multi-agent navigation must be developed. In
particular, multi-agent systems that utilize control algorithms
to maintain the necessary connectivity for drift-free naviga-
tion need to be developed. In addition, while the navigation
error is bounded, an examination of what those bounds are
needs to be undertaken. With these future advances in multi-
agent navigation systems, significant improvements in Air
Force capabilities without GPS can be achieved.
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APPENDIX A
In Section VI-A2, we made the claim that

E[cos(N (0, σ2))] = e−σ
2/2. This result was determined

experimentally as we explain in this paragraph. In Figure 44,
we plot the expected value of taking the cosine of a Gaussian
random process. The x-axis represents the standard deviation
of the random process, while the plot shows the mean of ten
million random numbers run through the cosine. From this
plot, it was estimated that the form of the expected value
is an exponential. Using an iterative least squares solution
to match the expected values with an exponential curve, we
found that E[cos(N (0, σ2))] = e−σ

2/2. We also observed
that as the number of random numbers used to compute
the expected value was increased, the more closely the
exponential term and the expected value tracked each other,
providing verification of the equality introduced above.
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Fig. 44. The plot of the expected value of cos(N (0, σ2)), where the x
axis is the σ used to compute the expected value. This plot shows the mean
across 10 million cosines of Gaussian random variables at each sigma value.


